| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > olcnd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| olcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| olcnd.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| olcnd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | olcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 3 | 2 | ord 865 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 4 | 1, 3 | mt3d 148 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: orcnd 879 1sdom2dom 9283 finnzfsuppd 9413 tdeglem4 26099 sltonold 28283 fzone1 32802 ccatws1f1o 32936 mxidlirred 33500 fldextrspundgdvdslem 33730 fldext2rspun 33732 zarclssn 33872 eulerpartlemgvv 34378 lcmineqlem23 42052 |
| Copyright terms: Public domain | W3C validator |