| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > olcnd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| olcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| olcnd.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| olcnd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | olcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 3 | 2 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 4 | 1, 3 | mt3d 148 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orcnd 878 ecase23d 1475 elprn2 4606 1sdom2dom 9148 finnzfsuppd 9267 fzone1 13694 tdeglem4 26002 sltonold 28208 xnn0nn0d 32766 ccatws1f1o 32943 mxidlirred 33448 fldextrspundgdvdslem 33704 fldext2rspun 33706 zarclssn 33897 eulerpartlemgvv 34400 lcmineqlem23 42154 chnerlem1 46994 |
| Copyright terms: Public domain | W3C validator |