MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  olcnd Structured version   Visualization version   GIF version

Theorem olcnd 877
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.)
Hypotheses
Ref Expression
olcnd.1 (𝜑 → (𝜓𝜒))
olcnd.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
olcnd (𝜑𝜓)

Proof of Theorem olcnd
StepHypRef Expression
1 olcnd.2 . 2 (𝜑 → ¬ 𝜒)
2 olcnd.1 . . 3 (𝜑 → (𝜓𝜒))
32ord 864 . 2 (𝜑 → (¬ 𝜓𝜒))
41, 3mt3d 148 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orcnd  878  ecase23d  1475  1sdom2dom  9201  finnzfsuppd  9331  tdeglem4  25972  sltonold  28169  xnn0nn0d  32702  fzone1  32730  ccatws1f1o  32880  mxidlirred  33450  fldextrspundgdvdslem  33682  fldext2rspun  33684  zarclssn  33870  eulerpartlemgvv  34374  lcmineqlem23  42046
  Copyright terms: Public domain W3C validator