Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > olcnd | Structured version Visualization version GIF version |
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.) |
Ref | Expression |
---|---|
olcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
olcnd.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
olcnd | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
2 | olcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
3 | 2 | ord 860 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
4 | 1, 3 | mt3d 148 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: orcnd 875 tdeglem4 25129 fzone1 31023 zarclssn 31725 eulerpartlemgvv 32243 lcmineqlem23 39987 finnzfsuppd 41709 |
Copyright terms: Public domain | W3C validator |