| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > olcnd | Structured version Visualization version GIF version | ||
| Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| olcnd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| olcnd.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| olcnd | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olcnd.2 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | olcnd.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 3 | 2 | ord 864 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| 4 | 1, 3 | mt3d 148 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: orcnd 878 ecase23d 1475 elprn2 4603 1sdom2dom 9133 finnzfsuppd 9252 fzone1 13676 tdeglem4 25985 sltonold 28191 xnn0nn0d 32745 ccatws1f1o 32922 mxidlirred 33427 fldextrspundgdvdslem 33683 fldext2rspun 33685 zarclssn 33876 eulerpartlemgvv 34379 lcmineqlem23 42063 |
| Copyright terms: Public domain | W3C validator |