MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  olcnd Structured version   Visualization version   GIF version

Theorem olcnd 877
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.)
Hypotheses
Ref Expression
olcnd.1 (𝜑 → (𝜓𝜒))
olcnd.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
olcnd (𝜑𝜓)

Proof of Theorem olcnd
StepHypRef Expression
1 olcnd.2 . 2 (𝜑 → ¬ 𝜒)
2 olcnd.1 . . 3 (𝜑 → (𝜓𝜒))
32ord 864 . 2 (𝜑 → (¬ 𝜓𝜒))
41, 3mt3d 148 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orcnd  878  ecase23d  1475  elprn2  4606  1sdom2dom  9148  finnzfsuppd  9267  fzone1  13694  tdeglem4  26002  sltonold  28208  xnn0nn0d  32766  ccatws1f1o  32943  mxidlirred  33448  fldextrspundgdvdslem  33704  fldext2rspun  33706  zarclssn  33897  eulerpartlemgvv  34400  lcmineqlem23  42154  chnerlem1  46994
  Copyright terms: Public domain W3C validator