MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  olcnd Structured version   Visualization version   GIF version

Theorem olcnd 877
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.)
Hypotheses
Ref Expression
olcnd.1 (𝜑 → (𝜓𝜒))
olcnd.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
olcnd (𝜑𝜓)

Proof of Theorem olcnd
StepHypRef Expression
1 olcnd.2 . 2 (𝜑 → ¬ 𝜒)
2 olcnd.1 . . 3 (𝜑 → (𝜓𝜒))
32ord 864 . 2 (𝜑 → (¬ 𝜓𝜒))
41, 3mt3d 148 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  orcnd  878  ecase23d  1475  1sdom2dom  9194  finnzfsuppd  9324  tdeglem4  25965  sltonold  28162  xnn0nn0d  32695  fzone1  32723  ccatws1f1o  32873  mxidlirred  33443  fldextrspundgdvdslem  33675  fldext2rspun  33677  zarclssn  33863  eulerpartlemgvv  34367  lcmineqlem23  42039
  Copyright terms: Public domain W3C validator