![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
Ref | Expression |
---|---|
sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpi 215 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitri 274 unitreslOLD 876 elabgt 3662 ssdifim 4262 ralf0 4513 disjxiun 5145 poclOLD 5596 wefrc 5670 frsn 5763 ssrel 5782 ssrelOLD 5783 funiun 7144 funopsn 7145 ssfi 9172 enfii 9188 nneneq 9208 fissuni 9356 inf3lem2 9623 rankvalb 9791 djur 9913 xrrebnd 13146 xaddf 13202 elfznelfzob 13737 fsuppmapnn0ub 13959 hashinfxadd 14344 hashfun 14396 fz1f1o 15655 clatl 18460 sgrp2nmndlem5 18809 mat1dimelbas 21972 cfinfil 23396 dyadmax 25114 ausgrusgri 28425 nbupgrres 28618 usgredgsscusgredg 28713 1egrvtxdg0 28765 wlkp1lem7 28933 isch3 30489 nmopun 31262 2ndresdju 31869 dvdszzq 32016 cycpm2tr 32273 esumnul 33041 dya2iocnrect 33275 bnj849 33931 bnj1279 34024 cusgr3cyclex 34122 bj-0int 35977 onsucuni3 36243 wl-nfeqfb 36400 poimirlem27 36510 sticksstones20 40977 sucomisnotcard 42285 iunrelexp0 42443 frege129d 42504 clsk3nimkb 42781 gneispace 42875 eliuniin 43778 eliuniin2 43799 stoweidlem48 44754 fourierdlem42 44855 fourierdlem80 44892 eubrdm 45736 oddprmALTV 46345 alimp-no-surprise 47818 |
Copyright terms: Public domain | W3C validator |