Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
Ref | Expression |
---|---|
sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpi 215 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitri 274 unitreslOLD 875 elabgt 3604 ssdifim 4197 ralf0 4445 disjxiun 5072 poclOLD 5512 wefrc 5584 frsn 5675 ssrel 5694 ssrelOLD 5695 funiun 7028 funopsn 7029 ssfi 8965 enfii 8981 nneneq 9001 fissuni 9133 inf3lem2 9396 rankvalb 9564 djur 9686 xrrebnd 12911 xaddf 12967 elfznelfzob 13502 fsuppmapnn0ub 13724 hashinfxadd 14109 hashfun 14161 fz1f1o 15431 clatl 18235 sgrp2nmndlem5 18577 mat1dimelbas 21629 cfinfil 23053 dyadmax 24771 ausgrusgri 27547 nbupgrres 27740 usgredgsscusgredg 27835 1egrvtxdg0 27887 wlkp1lem7 28056 isch3 29612 nmopun 30385 2ndresdju 30995 dvdszzq 31138 cycpm2tr 31395 esumnul 32025 dya2iocnrect 32257 bnj849 32914 bnj1279 33007 cusgr3cyclex 33107 bj-0int 35281 onsucuni3 35547 wl-nfeqfb 35704 poimirlem27 35813 sticksstones20 40129 sucomisnotcard 41158 iunrelexp0 41317 frege129d 41378 clsk3nimkb 41657 gneispace 41751 eliuniin 42656 eliuniin2 42676 stoweidlem48 43596 fourierdlem42 43697 fourierdlem80 43734 eubrdm 44541 oddprmALTV 45150 alimp-no-surprise 46496 |
Copyright terms: Public domain | W3C validator |