| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitri 275 elabgtOLDOLD 3640 ssdifim 4236 ralf0 4477 disjxiun 5104 wefrc 5632 frsn 5726 ssrel 5745 ssrelOLD 5746 funiun 7119 funopsn 7120 ssfi 9137 enfii 9150 nneneq 9170 fissuni 9308 inf3lem2 9582 rankvalb 9750 djur 9872 xrrebnd 13128 xaddf 13184 elfznelfzob 13734 fsuppmapnn0ub 13960 hashinfxadd 14350 hashfun 14402 fz1f1o 15676 dvdszzq 16691 clatl 18467 sgrp2nmndlem5 18856 mat1dimelbas 22358 cfinfil 23780 dyadmax 25499 ausgrusgri 29095 nbupgrres 29291 usgredgsscusgredg 29387 1egrvtxdg0 29439 wlkp1lem7 29607 isch3 31170 nmopun 31943 2ndresdju 32573 cycpm2tr 33076 elrgspnlem1 33193 elrgspnlem2 33194 fldextrspunlsplem 33668 esumnul 34038 dya2iocnrect 34272 bnj849 34915 bnj1279 35008 cusgr3cyclex 35123 in-ax8 36212 bj-0int 37089 onsucuni3 37355 wl-nfeqfb 37524 poimirlem27 37641 sticksstones20 42154 fimgmcyclem 42521 sucomisnotcard 43533 iunrelexp0 43691 frege129d 43752 clsk3nimkb 44029 gneispace 44123 eliuniin 45093 eliuniin2 45114 stoweidlem48 46046 fourierdlem42 46147 fourierdlem80 46184 eubrdm 47037 oddprmALTV 47688 grtriproplem 47938 grtrif1o 47941 pgnbgreunbgr 48115 alimp-no-surprise 49770 |
| Copyright terms: Public domain | W3C validator |