MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylbb Structured version   Visualization version   GIF version

Theorem sylbb 211
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.)
Hypotheses
Ref Expression
sylbb.1 (𝜑𝜓)
sylbb.2 (𝜓𝜒)
Assertion
Ref Expression
sylbb (𝜑𝜒)

Proof of Theorem sylbb
StepHypRef Expression
1 sylbb.1 . 2 (𝜑𝜓)
2 sylbb.2 . . 3 (𝜓𝜒)
32biimpi 208 . 2 (𝜓𝜒)
41, 3sylbi 209 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199
This theorem is referenced by:  bitri  267  ssdifim  4063  disjxiun  4840  trintOLD  4962  pocl  5240  wefrc  5306  frsn  5394  ssrel  5412  funiun  6640  funopsn  6641  fissuni  8513  inf3lem2  8776  rankvalb  8910  djur  9031  xrrebnd  12248  xaddf  12304  elfznelfzob  12829  fsuppmapnn0ub  13049  hashinfxadd  13424  hashfun  13473  fz1f1o  14782  clatl  17431  sgrp2nmndlem5  17732  mat1dimelbas  20603  cfinfil  22025  dyadmax  23706  ausgrusgri  26404  nbupgrres  26607  usgredgsscusgredg  26709  1egrvtxdg0  26761  wlkp1lem7  26932  wwlksnfi  27186  isch3  28623  nmopun  29398  esumnul  30626  dya2iocnrect  30859  bnj849  31512  bnj1279  31603  bj-0int  33548  onsucuni3  33713  wl-nfeqfb  33813  poimirlem27  33925  unitresl  34371  iunrelexp0  38773  frege129d  38834  clsk3nimkb  39116  gneispace  39210  eliuniin  40034  eliuniin2  40057  stoweidlem48  41004  fourierdlem42  41105  fourierdlem80  41142  eubrdm  41915  oddprmALTV  42376  alimp-no-surprise  43325
  Copyright terms: Public domain W3C validator