| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitri 275 elabgtOLDOLD 3625 ssdifim 4222 ralf0 4463 disjxiun 5090 wefrc 5613 frsn 5707 ssrel 5727 funiun 7086 funopsn 7087 ssfi 9089 enfii 9102 nneneq 9122 fissuni 9248 inf3lem2 9526 rankvalb 9697 djur 9819 xrrebnd 13069 xaddf 13125 elfznelfzob 13676 fsuppmapnn0ub 13904 hashinfxadd 14294 hashfun 14346 fz1f1o 15619 dvdszzq 16634 clatl 18416 sgrp2nmndlem5 18839 mat1dimelbas 22387 cfinfil 23809 dyadmax 25527 ausgrusgri 29148 nbupgrres 29344 usgredgsscusgredg 29440 1egrvtxdg0 29492 wlkp1lem7 29658 isch3 31223 nmopun 31996 2ndresdju 32633 cycpm2tr 33095 elrgspnlem1 33216 elrgspnlem2 33217 fldextrspunlsplem 33707 esumnul 34082 dya2iocnrect 34315 bnj849 34958 bnj1279 35051 cusgr3cyclex 35201 in-ax8 36289 bj-0int 37166 onsucuni3 37432 wl-nfeqfb 37601 poimirlem27 37707 sticksstones20 42279 fimgmcyclem 42651 sucomisnotcard 43661 iunrelexp0 43819 frege129d 43880 clsk3nimkb 44157 gneispace 44251 eliuniin 45220 eliuniin2 45241 stoweidlem48 46170 fourierdlem42 46271 fourierdlem80 46308 eubrdm 47160 oddprmALTV 47811 grtriproplem 48063 grtrif1o 48066 pgnbgreunbgr 48249 alimp-no-surprise 49906 |
| Copyright terms: Public domain | W3C validator |