Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
Ref | Expression |
---|---|
sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpi 219 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 220 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: bitri 278 unitreslOLD 875 ssdifim 4169 ralf0 4409 disjxiun 5032 pocl 5453 wefrc 5521 frsn 5612 ssrel 5630 funiun 6905 funopsn 6906 ssfi 8747 fissuni 8867 inf3lem2 9130 rankvalb 9264 djur 9386 xrrebnd 12607 xaddf 12663 elfznelfzob 13197 fsuppmapnn0ub 13417 hashinfxadd 13801 hashfun 13853 fz1f1o 15120 clatl 17797 sgrp2nmndlem5 18165 mat1dimelbas 21176 cfinfil 22598 dyadmax 24303 ausgrusgri 27065 nbupgrres 27258 usgredgsscusgredg 27353 1egrvtxdg0 27405 wlkp1lem7 27573 isch3 29128 nmopun 29901 2ndresdju 30513 dvdszzq 30657 cycpm2tr 30916 esumnul 31539 dya2iocnrect 31771 bnj849 32429 bnj1279 32522 cusgr3cyclex 32618 bj-0int 34822 onsucuni3 35090 wl-nfeqfb 35247 poimirlem27 35390 iunrelexp0 40804 frege129d 40865 clsk3nimkb 41144 gneispace 41238 eliuniin 42136 eliuniin2 42156 stoweidlem48 43084 fourierdlem42 43185 fourierdlem80 43222 eubrdm 44022 oddprmALTV 44600 alimp-no-surprise 45773 |
Copyright terms: Public domain | W3C validator |