| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitri 275 elabgtOLDOLD 3631 ssdifim 4226 ralf0 4467 disjxiun 5092 wefrc 5617 frsn 5711 ssrel 5730 funiun 7085 funopsn 7086 ssfi 9097 enfii 9110 nneneq 9130 fissuni 9266 inf3lem2 9544 rankvalb 9712 djur 9834 xrrebnd 13088 xaddf 13144 elfznelfzob 13694 fsuppmapnn0ub 13920 hashinfxadd 14310 hashfun 14362 fz1f1o 15635 dvdszzq 16650 clatl 18432 sgrp2nmndlem5 18821 mat1dimelbas 22374 cfinfil 23796 dyadmax 25515 ausgrusgri 29131 nbupgrres 29327 usgredgsscusgredg 29423 1egrvtxdg0 29475 wlkp1lem7 29641 isch3 31203 nmopun 31976 2ndresdju 32606 cycpm2tr 33074 elrgspnlem1 33192 elrgspnlem2 33193 fldextrspunlsplem 33644 esumnul 34014 dya2iocnrect 34248 bnj849 34891 bnj1279 34984 cusgr3cyclex 35108 in-ax8 36197 bj-0int 37074 onsucuni3 37340 wl-nfeqfb 37509 poimirlem27 37626 sticksstones20 42139 fimgmcyclem 42506 sucomisnotcard 43517 iunrelexp0 43675 frege129d 43736 clsk3nimkb 44013 gneispace 44107 eliuniin 45077 eliuniin2 45098 stoweidlem48 46030 fourierdlem42 46131 fourierdlem80 46168 eubrdm 47021 oddprmALTV 47672 grtriproplem 47924 grtrif1o 47927 pgnbgreunbgr 48110 alimp-no-surprise 49767 |
| Copyright terms: Public domain | W3C validator |