| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitri 275 elabgtOLD 3652 ssdifim 4248 ralf0 4489 disjxiun 5116 wefrc 5648 frsn 5742 ssrel 5761 ssrelOLD 5762 funiun 7136 funopsn 7137 ssfi 9185 enfii 9198 nneneq 9218 fissuni 9367 inf3lem2 9641 rankvalb 9809 djur 9931 xrrebnd 13182 xaddf 13238 elfznelfzob 13787 fsuppmapnn0ub 14011 hashinfxadd 14401 hashfun 14453 fz1f1o 15724 dvdszzq 16738 clatl 18516 sgrp2nmndlem5 18905 mat1dimelbas 22407 cfinfil 23829 dyadmax 25549 ausgrusgri 29093 nbupgrres 29289 usgredgsscusgredg 29385 1egrvtxdg0 29437 wlkp1lem7 29605 isch3 31168 nmopun 31941 2ndresdju 32573 cycpm2tr 33076 elrgspnlem1 33183 elrgspnlem2 33184 fldextrspunlsplem 33660 esumnul 34025 dya2iocnrect 34259 bnj849 34902 bnj1279 34995 cusgr3cyclex 35104 in-ax8 36188 bj-0int 37065 onsucuni3 37331 wl-nfeqfb 37500 poimirlem27 37617 sticksstones20 42125 fimgmcyclem 42503 sucomisnotcard 43515 iunrelexp0 43673 frege129d 43734 clsk3nimkb 44011 gneispace 44105 eliuniin 45071 eliuniin2 45092 stoweidlem48 46025 fourierdlem42 46126 fourierdlem80 46163 eubrdm 47013 oddprmALTV 47649 grtriproplem 47899 grtrif1o 47902 alimp-no-surprise 49593 |
| Copyright terms: Public domain | W3C validator |