| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitri 275 elabgtOLDOLD 3643 ssdifim 4239 ralf0 4480 disjxiun 5107 wefrc 5635 frsn 5729 ssrel 5748 ssrelOLD 5749 funiun 7122 funopsn 7123 ssfi 9143 enfii 9156 nneneq 9176 fissuni 9315 inf3lem2 9589 rankvalb 9757 djur 9879 xrrebnd 13135 xaddf 13191 elfznelfzob 13741 fsuppmapnn0ub 13967 hashinfxadd 14357 hashfun 14409 fz1f1o 15683 dvdszzq 16698 clatl 18474 sgrp2nmndlem5 18863 mat1dimelbas 22365 cfinfil 23787 dyadmax 25506 ausgrusgri 29102 nbupgrres 29298 usgredgsscusgredg 29394 1egrvtxdg0 29446 wlkp1lem7 29614 isch3 31177 nmopun 31950 2ndresdju 32580 cycpm2tr 33083 elrgspnlem1 33200 elrgspnlem2 33201 fldextrspunlsplem 33675 esumnul 34045 dya2iocnrect 34279 bnj849 34922 bnj1279 35015 cusgr3cyclex 35130 in-ax8 36219 bj-0int 37096 onsucuni3 37362 wl-nfeqfb 37531 poimirlem27 37648 sticksstones20 42161 fimgmcyclem 42528 sucomisnotcard 43540 iunrelexp0 43698 frege129d 43759 clsk3nimkb 44036 gneispace 44130 eliuniin 45100 eliuniin2 45121 stoweidlem48 46053 fourierdlem42 46154 fourierdlem80 46191 eubrdm 47041 oddprmALTV 47692 grtriproplem 47942 grtrif1o 47945 pgnbgreunbgr 48119 alimp-no-surprise 49774 |
| Copyright terms: Public domain | W3C validator |