| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version | ||
| Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
| sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| sylbb | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝜓 → 𝜒) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitri 275 elabgtOLDOLD 3629 ssdifim 4223 ralf0 4464 disjxiun 5088 wefrc 5610 frsn 5704 ssrel 5723 funiun 7080 funopsn 7081 ssfi 9082 enfii 9095 nneneq 9115 fissuni 9241 inf3lem2 9519 rankvalb 9687 djur 9809 xrrebnd 13064 xaddf 13120 elfznelfzob 13671 fsuppmapnn0ub 13899 hashinfxadd 14289 hashfun 14341 fz1f1o 15614 dvdszzq 16629 clatl 18411 sgrp2nmndlem5 18834 mat1dimelbas 22384 cfinfil 23806 dyadmax 25524 ausgrusgri 29144 nbupgrres 29340 usgredgsscusgredg 29436 1egrvtxdg0 29488 wlkp1lem7 29654 isch3 31216 nmopun 31989 2ndresdju 32626 cycpm2tr 33083 elrgspnlem1 33204 elrgspnlem2 33205 fldextrspunlsplem 33681 esumnul 34056 dya2iocnrect 34289 bnj849 34932 bnj1279 35025 cusgr3cyclex 35168 in-ax8 36257 bj-0int 37134 onsucuni3 37400 wl-nfeqfb 37569 poimirlem27 37686 sticksstones20 42198 fimgmcyclem 42565 sucomisnotcard 43576 iunrelexp0 43734 frege129d 43795 clsk3nimkb 44072 gneispace 44166 eliuniin 45135 eliuniin2 45156 stoweidlem48 46085 fourierdlem42 46186 fourierdlem80 46223 eubrdm 47066 oddprmALTV 47717 grtriproplem 47969 grtrif1o 47972 pgnbgreunbgr 48155 alimp-no-surprise 49812 |
| Copyright terms: Public domain | W3C validator |