![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
Ref | Expression |
---|---|
sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpi 216 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bitri 275 elabgtOLD 3672 ssdifim 4278 ralf0 4519 disjxiun 5144 wefrc 5682 frsn 5775 ssrel 5794 ssrelOLD 5795 funiun 7166 funopsn 7167 ssfi 9211 enfii 9223 nneneq 9243 fissuni 9394 inf3lem2 9666 rankvalb 9834 djur 9956 xrrebnd 13206 xaddf 13262 elfznelfzob 13808 fsuppmapnn0ub 14032 hashinfxadd 14420 hashfun 14472 fz1f1o 15742 dvdszzq 16754 clatl 18565 sgrp2nmndlem5 18954 mat1dimelbas 22492 cfinfil 23916 dyadmax 25646 ausgrusgri 29199 nbupgrres 29395 usgredgsscusgredg 29491 1egrvtxdg0 29543 wlkp1lem7 29711 isch3 31269 nmopun 32042 2ndresdju 32665 cycpm2tr 33121 elrgspnlem1 33231 elrgspnlem2 33232 esumnul 34028 dya2iocnrect 34262 bnj849 34917 bnj1279 35010 cusgr3cyclex 35120 in-ax8 36206 bj-0int 37083 onsucuni3 37349 wl-nfeqfb 37516 poimirlem27 37633 sticksstones20 42147 fimgmcyclem 42519 sucomisnotcard 43533 iunrelexp0 43691 frege129d 43752 clsk3nimkb 44029 gneispace 44123 eliuniin 45038 eliuniin2 45059 stoweidlem48 46003 fourierdlem42 46104 fourierdlem80 46141 eubrdm 46985 oddprmALTV 47611 grtriproplem 47843 grtrif1o 47846 alimp-no-surprise 49011 |
Copyright terms: Public domain | W3C validator |