![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
Ref | Expression |
---|---|
sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpi 216 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bitri 275 elabgtOLD 3686 ssdifim 4292 ralf0 4537 disjxiun 5163 poclOLD 5616 wefrc 5694 frsn 5787 ssrel 5806 ssrelOLD 5807 funiun 7181 funopsn 7182 ssfi 9240 enfii 9252 nneneq 9272 fissuni 9427 inf3lem2 9698 rankvalb 9866 djur 9988 xrrebnd 13230 xaddf 13286 elfznelfzob 13823 fsuppmapnn0ub 14046 hashinfxadd 14434 hashfun 14486 fz1f1o 15758 dvdszzq 16768 clatl 18578 sgrp2nmndlem5 18964 mat1dimelbas 22498 cfinfil 23922 dyadmax 25652 ausgrusgri 29203 nbupgrres 29399 usgredgsscusgredg 29495 1egrvtxdg0 29547 wlkp1lem7 29715 isch3 31273 nmopun 32046 2ndresdju 32667 cycpm2tr 33112 esumnul 34012 dya2iocnrect 34246 bnj849 34901 bnj1279 34994 cusgr3cyclex 35104 in-ax8 36190 bj-0int 37067 onsucuni3 37333 wl-nfeqfb 37490 poimirlem27 37607 sticksstones20 42123 fimgmcyclem 42488 sucomisnotcard 43506 iunrelexp0 43664 frege129d 43725 clsk3nimkb 44002 gneispace 44096 eliuniin 45001 eliuniin2 45022 stoweidlem48 45969 fourierdlem42 46070 fourierdlem80 46107 eubrdm 46951 oddprmALTV 47561 grtriproplem 47790 grtrif1o 47793 alimp-no-surprise 48875 |
Copyright terms: Public domain | W3C validator |