![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylbb | Structured version Visualization version GIF version |
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019.) |
Ref | Expression |
---|---|
sylbb.1 | ⊢ (𝜑 ↔ 𝜓) |
sylbb.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
sylbb | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbb.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | sylbb.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | biimpi 215 | . 2 ⊢ (𝜓 → 𝜒) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bitri 275 unitreslOLD 877 elabgt 3663 ssdifim 4263 ralf0 4514 disjxiun 5146 poclOLD 5597 wefrc 5671 frsn 5764 ssrel 5783 ssrelOLD 5784 funiun 7145 funopsn 7146 ssfi 9173 enfii 9189 nneneq 9209 fissuni 9357 inf3lem2 9624 rankvalb 9792 djur 9914 xrrebnd 13147 xaddf 13203 elfznelfzob 13738 fsuppmapnn0ub 13960 hashinfxadd 14345 hashfun 14397 fz1f1o 15656 clatl 18461 sgrp2nmndlem5 18810 mat1dimelbas 21973 cfinfil 23397 dyadmax 25115 ausgrusgri 28428 nbupgrres 28621 usgredgsscusgredg 28716 1egrvtxdg0 28768 wlkp1lem7 28936 isch3 30494 nmopun 31267 2ndresdju 31874 dvdszzq 32021 cycpm2tr 32278 esumnul 33046 dya2iocnrect 33280 bnj849 33936 bnj1279 34029 cusgr3cyclex 34127 bj-0int 35982 onsucuni3 36248 wl-nfeqfb 36405 poimirlem27 36515 sticksstones20 40982 sucomisnotcard 42295 iunrelexp0 42453 frege129d 42514 clsk3nimkb 42791 gneispace 42885 eliuniin 43788 eliuniin2 43809 stoweidlem48 44764 fourierdlem42 44865 fourierdlem80 44902 eubrdm 45746 oddprmALTV 46355 alimp-no-surprise 47828 |
Copyright terms: Public domain | W3C validator |