|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uunTT1p2 | Structured version Visualization version GIF version | ||
| Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| uunTT1p2.1 | ⊢ ((𝜑 ∧ ⊤ ∧ ⊤) → 𝜓) | 
| Ref | Expression | 
|---|---|
| uunTT1p2 | ⊢ (𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3anrot 1099 | . . . 4 ⊢ ((𝜑 ∧ ⊤ ∧ ⊤) ↔ (⊤ ∧ ⊤ ∧ 𝜑)) | |
| 2 | 3anass 1094 | . . . 4 ⊢ ((⊤ ∧ ⊤ ∧ 𝜑) ↔ (⊤ ∧ (⊤ ∧ 𝜑))) | |
| 3 | anabs5 663 | . . . 4 ⊢ ((⊤ ∧ (⊤ ∧ 𝜑)) ↔ (⊤ ∧ 𝜑)) | |
| 4 | 1, 2, 3 | 3bitri 297 | . . 3 ⊢ ((𝜑 ∧ ⊤ ∧ ⊤) ↔ (⊤ ∧ 𝜑)) | 
| 5 | truan 1550 | . . 3 ⊢ ((⊤ ∧ 𝜑) ↔ 𝜑) | |
| 6 | 4, 5 | bitri 275 | . 2 ⊢ ((𝜑 ∧ ⊤ ∧ ⊤) ↔ 𝜑) | 
| 7 | uunTT1p2.1 | . 2 ⊢ ((𝜑 ∧ ⊤ ∧ ⊤) → 𝜓) | |
| 8 | 6, 7 | sylbir 235 | 1 ⊢ (𝜑 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ⊤wtru 1540 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |