Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uunTT1p2 Structured version   Visualization version   GIF version

Theorem uunTT1p2 42415
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uunTT1p2.1 ((𝜑 ∧ ⊤ ∧ ⊤) → 𝜓)
Assertion
Ref Expression
uunTT1p2 (𝜑𝜓)

Proof of Theorem uunTT1p2
StepHypRef Expression
1 3anrot 1099 . . . 4 ((𝜑 ∧ ⊤ ∧ ⊤) ↔ (⊤ ∧ ⊤ ∧ 𝜑))
2 3anass 1094 . . . 4 ((⊤ ∧ ⊤ ∧ 𝜑) ↔ (⊤ ∧ (⊤ ∧ 𝜑)))
3 anabs5 660 . . . 4 ((⊤ ∧ (⊤ ∧ 𝜑)) ↔ (⊤ ∧ 𝜑))
41, 2, 33bitri 297 . . 3 ((𝜑 ∧ ⊤ ∧ ⊤) ↔ (⊤ ∧ 𝜑))
5 truan 1550 . . 3 ((⊤ ∧ 𝜑) ↔ 𝜑)
64, 5bitri 274 . 2 ((𝜑 ∧ ⊤ ∧ ⊤) ↔ 𝜑)
7 uunTT1p2.1 . 2 ((𝜑 ∧ ⊤ ∧ ⊤) → 𝜓)
86, 7sylbir 234 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wtru 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator