MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xornan2 Structured version   Visualization version   GIF version

Theorem xornan2 1513
Description: XOR implies NAND (written with the connector). (Contributed by BJ, 19-Apr-2019.)
Assertion
Ref Expression
xornan2 ((𝜑𝜓) → (𝜑𝜓))

Proof of Theorem xornan2
StepHypRef Expression
1 xornan 1512 . 2 ((𝜑𝜓) → ¬ (𝜑𝜓))
2 df-nan 1484 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
31, 2sylibr 233 1 ((𝜑𝜓) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnan 1483  wxo 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-nan 1484  df-xor 1504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator