Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xornan2 | Structured version Visualization version GIF version |
Description: XOR implies NAND (written with the ⊼ connector). (Contributed by BJ, 19-Apr-2019.) |
Ref | Expression |
---|---|
xornan2 | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ⊼ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xornan 1515 | . 2 ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) | |
2 | df-nan 1487 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ⊼ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ⊼ wnan 1486 ⊻ wxo 1506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-nan 1487 df-xor 1507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |