|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xornan2 | Structured version Visualization version GIF version | ||
| Description: XOR implies NAND (written with the ⊼ connector). (Contributed by BJ, 19-Apr-2019.) | 
| Ref | Expression | 
|---|---|
| xornan2 | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ⊼ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xornan 1518 | . 2 ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) | |
| 2 | df-nan 1491 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ⊼ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊼ wnan 1490 ⊻ wxo 1510 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-nan 1491 df-xor 1511 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |