![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 275 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: con2bi 353 xorneg2 1518 sbrimvw 2091 2eu4 2658 2eu5 2659 r19.41v 3195 r3ex 3204 r19.41 3269 sbralie 3366 pm13.183 3679 euxfrw 3743 euxfr 3745 euind 3746 rmo4 3752 rmo3f 3756 2reu5lem3 3779 rmo3 3911 difin 4291 indifdi 4313 ab0orv 4406 dftr5 5287 axsepgfromrep 5315 inuni 5368 reusv2lem4 5419 rabxp 5748 elvvv 5775 eliunxp 5862 elidinxp 6073 imadisj 6109 idrefALT 6143 intirr 6150 resco 6281 funcnv3 6648 fncnv 6651 fun11 6652 fununi 6653 mptfnf 6715 f1mpt 7298 mpomptx 7563 uniuni 7797 frxp 8167 xpord2pred 8186 xpord2indlem 8188 oeeu 8659 ixp0x 8984 xpcomco 9128 1sdomOLD 9312 dffi3 9500 wemapsolem 9619 cardval3 10021 kmlem4 10223 kmlem12 10231 kmlem14 10233 kmlem15 10234 kmlem16 10235 fpwwe2 10712 axgroth4 10901 ltexprlem4 11108 bitsmod 16482 pythagtrip 16881 isstruct 17199 pgpfac1 20124 pgpfac 20128 basdif0 22981 ntreq0 23106 tgcmp 23430 tx1cn 23638 rnelfmlem 23981 phtpcer 25046 iscvsp 25180 caucfil 25336 minveclem1 25477 ovoliunlem1 25556 mdegleb 26123 eqscut2 27869 dmscut 27874 made0 27930 mulsuniflem 28193 istrkg2ld 28486 numedglnl 29179 usgr2pth0 29801 adjbd1o 32117 nmo 32518 dmrab 32525 difrab2 32526 mpomptxf 32695 ccfldextdgrr 33682 isros 34132 1stmbfm 34225 bnj976 34753 bnj1143 34766 bnj1533 34828 bnj864 34898 bnj983 34927 bnj1174 34979 bnj1175 34980 bnj1280 34996 cvmlift2lem12 35282 axacprim 35669 dfrecs2 35914 andnand1 36367 bj-snglc 36935 bj-disj2r 36994 bj-dfmpoa 37084 bj-mpomptALT 37085 mptsnunlem 37304 wl-df3xor2 37435 wl-df4-3mintru2 37453 wl-cases2-dnf 37466 wl-euae 37471 itg2addnc 37634 asindmre 37663 brres2 38224 brxrn2 38331 dfxrn2 38332 inxpxrn 38351 refsymrel2 38523 refsymrel3 38524 dfeqvrel2 38546 dfeqvrel3 38547 isopos 39136 dihglblem6 41297 dihglb2 41299 fgraphopab 43164 unielss 43179 dflim5 43291 ifpid2g 43455 ifpim23g 43457 rp-fakeanorass 43475 en2pr 43509 elmapintrab 43538 relnonrel 43549 undmrnresiss 43566 elintima 43615 relexp0eq 43663 iunrelexp0 43664 dffrege115 43940 frege131 43956 frege133 43958 ntrneikb 44056 elnev 44407 onfrALTlem5 44513 onfrALTlem5VD 44856 ndisj2 44953 ndmaovcom 47120 usgrexmpl2nb3 47849 eliunxp2 48058 mpomptx2 48059 mo0sn 48547 i0oii 48599 io1ii 48600 alimp-no-surprise 48875 alsi-no-surprise 48890 |
Copyright terms: Public domain | W3C validator |