![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 275 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con2bi 354 xorneg2 1521 sbrimvw 2095 2eu4 2651 2eu5 2652 sbralie 3355 euxfrw 3718 euxfr 3720 euind 3721 rmo4 3727 rmo3f 3731 2reu5lem3 3754 rmo3 3884 difin 4262 indifdi 4284 ab0orv 4379 dftr5 5270 axsepgfromrep 5298 reusv2lem4 5400 rabxp 5725 elvvv 5752 eliunxp 5838 elidinxp 6044 imadisj 6080 idrefALT 6113 intirr 6120 resco 6250 funcnv3 6619 fncnv 6622 fun11 6623 fununi 6624 mptfnf 6686 f1mpt 7260 mpomptx 7521 uniuni 7749 frxp 8112 xpord2pred 8131 xpord2indlem 8133 oeeu 8603 ixp0x 8920 xpcomco 9062 1sdomOLD 9249 dffi3 9426 wemapsolem 9545 cardval3 9947 kmlem4 10148 kmlem12 10156 kmlem14 10158 kmlem15 10159 kmlem16 10160 fpwwe2 10638 axgroth4 10827 ltexprlem4 11034 bitsmod 16377 pythagtrip 16767 isstruct 17085 pgpfac1 19950 pgpfac 19954 basdif0 22456 ntreq0 22581 tgcmp 22905 tx1cn 23113 rnelfmlem 23456 phtpcer 24511 iscvsp 24644 caucfil 24800 minveclem1 24941 ovoliunlem1 25019 mdegleb 25582 eqscut2 27308 dmscut 27313 made0 27369 mulsuniflem 27607 istrkg2ld 27742 numedglnl 28435 usgr2pth0 29053 adjbd1o 31369 nmo 31761 dmrab 31768 difrab2 31769 mpomptxf 31936 ccfldextdgrr 32777 isros 33197 1stmbfm 33290 bnj976 33819 bnj1143 33832 bnj1533 33894 bnj864 33964 bnj983 33993 bnj1174 34045 bnj1175 34046 bnj1280 34062 cvmlift2lem12 34336 axacprim 34707 dfrecs2 34953 andnand1 35334 bj-snglc 35898 bj-disj2r 35957 bj-dfmpoa 36047 bj-mpomptALT 36048 mptsnunlem 36267 wl-df3xor2 36398 wl-df4-3mintru2 36416 wl-cases2-dnf 36429 wl-euae 36434 itg2addnc 36590 asindmre 36619 brres2 37184 brxrn2 37293 dfxrn2 37294 inxpxrn 37313 refsymrel2 37485 refsymrel3 37486 dfeqvrel2 37508 dfeqvrel3 37509 isopos 38098 dihglblem6 40259 dihglb2 40261 fgraphopab 42000 unielss 42015 dflim5 42127 ifpid2g 42292 ifpim23g 42294 rp-fakeanorass 42312 en2pr 42346 elmapintrab 42375 relnonrel 42386 undmrnresiss 42403 elintima 42452 relexp0eq 42500 iunrelexp0 42501 dffrege115 42777 frege131 42793 frege133 42795 ntrneikb 42893 elnev 43245 onfrALTlem5 43351 onfrALTlem5VD 43694 ndisj2 43786 ndmaovcom 45961 eliunxp2 47057 mpomptx2 47058 mo0sn 47548 i0oii 47600 io1ii 47601 alimp-no-surprise 47876 alsi-no-surprise 47891 |
Copyright terms: Public domain | W3C validator |