Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr2i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 274 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con2bi 353 xorneg2 1514 sbrimvlem 2095 2eu4 2656 2eu5 2657 euxfrw 3651 euxfr 3653 euind 3654 rmo4 3660 rmo3f 3664 2reu5lem3 3687 rmo3 3818 difin 4192 indifdi 4214 ab0orv 4309 axsepgfromrep 5216 reusv2lem4 5319 rabxp 5626 elvvv 5653 eliunxp 5735 elidinxp 5940 imadisj 5977 idrefALT 6007 intirr 6012 resco 6143 funcnv3 6488 fncnv 6491 fun11 6492 fununi 6493 mptfnf 6552 f1mpt 7115 mpomptx 7365 uniuni 7590 frxp 7938 oeeu 8396 ixp0x 8672 xpcomco 8802 1sdom 8955 dffi3 9120 wemapsolem 9239 cardval3 9641 kmlem4 9840 kmlem12 9848 kmlem14 9850 kmlem15 9851 kmlem16 9852 fpwwe2 10330 axgroth4 10519 ltexprlem4 10726 bitsmod 16071 pythagtrip 16463 isstruct 16781 pgpfac1 19598 pgpfac 19602 isassa 20973 basdif0 22011 ntreq0 22136 tgcmp 22460 tx1cn 22668 rnelfmlem 23011 phtpcer 24064 iscvsp 24197 caucfil 24352 minveclem1 24493 ovoliunlem1 24571 mdegleb 25134 istrkg2ld 26725 numedglnl 27417 usgr2pth0 28034 adjbd1o 30348 nelbOLDOLD 30718 nmo 30739 dmrab 30745 difrab2 30746 mpomptxf 30918 ccfldextdgrr 31644 isros 32036 1stmbfm 32127 bnj976 32657 bnj1143 32670 bnj1533 32732 bnj864 32802 bnj983 32831 bnj1174 32883 bnj1175 32884 bnj1280 32900 cvmlift2lem12 33176 axacprim 33548 xpord2pred 33719 xpord2ind 33721 eqscut2 33927 dmscut 33932 made0 33984 dfrecs2 34179 andnand1 34517 bj-snglc 35086 bj-disj2r 35145 bj-dfmpoa 35216 bj-mpomptALT 35217 mptsnunlem 35436 wl-df3xor2 35567 wl-df4-3mintru2 35585 wl-cases2-dnf 35598 wl-euae 35603 itg2addnc 35758 asindmre 35787 brres2 36334 brxrn2 36432 dfxrn2 36433 inxpxrn 36448 refsymrel2 36608 refsymrel3 36609 dfeqvrel2 36630 dfeqvrel3 36631 isopos 37121 dihglblem6 39281 dihglb2 39283 fgraphopab 40951 ifpid2g 40998 ifpim23g 41000 rp-fakeanorass 41018 en2pr 41043 elmapintrab 41073 relnonrel 41084 undmrnresiss 41101 elintima 41150 relexp0eq 41198 iunrelexp0 41199 dffrege115 41475 frege131 41491 frege133 41493 ntrneikb 41593 onfrALTlem5 42051 onfrALTlem5VD 42394 ndisj2 42488 ndmaovcom 44584 eliunxp2 45557 mpomptx2 45558 mo0sn 46049 i0oii 46101 io1ii 46102 alimp-no-surprise 46371 alsi-no-surprise 46386 |
Copyright terms: Public domain | W3C validator |