| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2i | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝜑 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con2bi 353 xorneg2 1521 sbrimvw 2092 2eu4 2655 2eu5 2656 r19.41v 3175 r3ex 3184 r19.41 3250 sbralie 3336 sbralieOLD 3338 pm13.183 3650 euxfrw 3709 euxfr 3711 euind 3712 rmo4 3718 rmo3f 3722 2reu5lem3 3745 rmo3 3869 difin 4252 indifdi 4274 ab0orv 4363 dftr5 5238 axsepgfromrep 5269 inuni 5325 reusv2lem4 5376 rabxp 5707 elvvv 5735 eliunxp 5822 elidinxp 6036 imadisj 6072 idrefALT 6105 intirr 6112 resco 6244 funcnv3 6611 fncnv 6614 fun11 6615 fununi 6616 mptfnf 6678 f1mpt 7259 mpomptx 7525 uniuni 7761 frxp 8130 xpord2pred 8149 xpord2indlem 8151 oeeu 8620 ixp0x 8945 xpcomco 9081 1sdomOLD 9262 dffi3 9448 wemapsolem 9569 cardval3 9971 kmlem4 10173 kmlem12 10181 kmlem14 10183 kmlem15 10184 kmlem16 10185 fpwwe2 10662 axgroth4 10851 ltexprlem4 11058 bitsmod 16460 pythagtrip 16859 isstruct 17176 pgpfac1 20068 pgpfac 20072 basdif0 22896 ntreq0 23020 tgcmp 23344 tx1cn 23552 rnelfmlem 23895 phtpcer 24950 iscvsp 25084 caucfil 25240 minveclem1 25381 ovoliunlem1 25460 mdegleb 26026 eqscut2 27775 dmscut 27780 made0 27842 mulsuniflem 28109 istrkg2ld 28444 numedglnl 29128 usgr2pth0 29752 adjbd1o 32071 nmo 32476 dmrab 32483 difrab2 32484 mpomptxf 32660 ccfldextdgrr 33718 fldextrspunlsplem 33719 isros 34204 1stmbfm 34297 bnj976 34813 bnj1143 34826 bnj1533 34888 bnj864 34958 bnj983 34987 bnj1174 35039 bnj1175 35040 bnj1280 35056 cvmlift2lem12 35341 axacprim 35729 dfrecs2 35973 andnand1 36424 bj-snglc 36992 bj-disj2r 37051 bj-dfmpoa 37141 bj-mpomptALT 37142 mptsnunlem 37361 wl-df3xor2 37492 wl-df4-3mintru2 37510 wl-cases2-dnf 37535 wl-euae 37540 itg2addnc 37703 asindmre 37732 brres2 38291 brxrn2 38398 dfxrn2 38399 inxpxrn 38418 refsymrel2 38590 refsymrel3 38591 dfeqvrel2 38613 dfeqvrel3 38614 isopos 39203 dihglblem6 41364 dihglb2 41366 fgraphopab 43194 unielss 43209 dflim5 43320 ifpid2g 43484 ifpim23g 43486 rp-fakeanorass 43504 en2pr 43538 elmapintrab 43567 relnonrel 43578 undmrnresiss 43595 elintima 43644 relexp0eq 43692 iunrelexp0 43693 dffrege115 43969 frege131 43985 frege133 43987 ntrneikb 44085 elnev 44429 onfrALTlem5 44534 onfrALTlem5VD 44876 ndisj2 45042 ndmaovcom 47201 usgrexmpl2nb3 48005 eliunxp2 48276 mpomptx2 48277 mo0sn 48761 i0oii 48861 io1ii 48862 alimp-no-surprise 49612 alsi-no-surprise 49627 |
| Copyright terms: Public domain | W3C validator |