Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr2i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 281 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 278 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: con2bi 357 xorneg2 1514 sbrimvlem 2099 dfsb7OLD 2283 2eu4 2676 2eu5 2677 2eu5OLD 2678 euxfrw 3638 euxfr 3640 euind 3641 rmo4 3647 rmo3f 3651 2reu5lem3 3674 rmo3 3798 difin 4169 indifdi 4191 ab0orv 4279 axsepgfromrep 5172 reusv2lem4 5275 rabxp 5575 elvvv 5602 eliunxp 5684 elidinxp 5889 imadisj 5926 idrefALT 5951 intirr 5956 resco 6086 funcnv3 6411 fncnv 6414 fun11 6415 fununi 6416 mptfnf 6472 f1mpt 7018 mpomptx 7266 uniuni 7490 frxp 7832 oeeu 8246 ixp0x 8522 xpcomco 8642 1sdom 8773 dffi3 8942 wemapsolem 9061 cardval3 9428 kmlem4 9627 kmlem12 9635 kmlem14 9637 kmlem15 9638 kmlem16 9639 fpwwe2 10117 axgroth4 10306 ltexprlem4 10513 bitsmod 15849 pythagtrip 16241 isstruct 16569 pgpfac1 19285 pgpfac 19289 isassa 20636 basdif0 21668 ntreq0 21792 tgcmp 22116 tx1cn 22324 rnelfmlem 22667 phtpcer 23711 iscvsp 23844 caucfil 23998 minveclem1 24139 ovoliunlem1 24217 mdegleb 24779 istrkg2ld 26368 numedglnl 27051 usgr2pth0 27668 adjbd1o 29982 nelbOLD 30353 nmo 30375 dmrab 30381 difrab2 30382 mpomptxf 30554 ccfldextdgrr 31277 isros 31669 1stmbfm 31760 bnj976 32291 bnj1143 32304 bnj1533 32366 bnj864 32436 bnj983 32465 bnj1174 32517 bnj1175 32518 bnj1280 32534 cvmlift2lem12 32806 axacprim 33178 xpord2pred 33361 xpord2ind 33363 eqscut2 33597 dmscut 33602 made0 33650 dfrecs2 33837 andnand1 34175 bj-snglc 34722 bj-disj2r 34781 bj-dfmpoa 34849 bj-mpomptALT 34850 mptsnunlem 35071 wl-df3xor2 35202 wl-df4-3mintru2 35220 wl-cases2-dnf 35233 wl-euae 35238 wl-dfralv 35322 itg2addnc 35427 asindmre 35456 brres2 36005 brxrn2 36103 dfxrn2 36104 inxpxrn 36119 refsymrel2 36279 refsymrel3 36280 dfeqvrel2 36301 dfeqvrel3 36302 isopos 36792 dihglblem6 38952 dihglb2 38954 fgraphopab 40573 ifpid2g 40620 ifpim23g 40622 rp-fakeanorass 40640 en2pr 40665 elmapintrab 40695 relnonrel 40706 undmrnresiss 40723 elintima 40773 relexp0eq 40821 iunrelexp0 40822 dffrege115 41098 frege131 41114 frege133 41116 ntrneikb 41216 onfrALTlem5 41667 onfrALTlem5VD 42010 ndisj2 42104 ndmaovcom 44189 eliunxp2 45162 mpomptx2 45163 i0oii 45665 io1ii 45666 alimp-no-surprise 45807 alsi-no-surprise 45822 |
Copyright terms: Public domain | W3C validator |