![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr2i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 275 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con2bi 354 xorneg2 1521 sbrimvw 2095 2eu4 2651 2eu5 2652 sbralie 3355 euxfrw 3718 euxfr 3720 euind 3721 rmo4 3727 rmo3f 3731 2reu5lem3 3754 rmo3 3884 difin 4262 indifdi 4284 ab0orv 4379 dftr5 5270 axsepgfromrep 5298 reusv2lem4 5400 rabxp 5725 elvvv 5752 eliunxp 5838 elidinxp 6044 imadisj 6080 idrefALT 6113 intirr 6120 resco 6250 funcnv3 6619 fncnv 6622 fun11 6623 fununi 6624 mptfnf 6686 f1mpt 7260 mpomptx 7521 uniuni 7749 frxp 8112 xpord2pred 8131 xpord2indlem 8133 oeeu 8603 ixp0x 8920 xpcomco 9062 1sdomOLD 9249 dffi3 9426 wemapsolem 9545 cardval3 9947 kmlem4 10148 kmlem12 10156 kmlem14 10158 kmlem15 10159 kmlem16 10160 fpwwe2 10638 axgroth4 10827 ltexprlem4 11034 bitsmod 16377 pythagtrip 16767 isstruct 17085 pgpfac1 19950 pgpfac 19954 basdif0 22456 ntreq0 22581 tgcmp 22905 tx1cn 23113 rnelfmlem 23456 phtpcer 24511 iscvsp 24644 caucfil 24800 minveclem1 24941 ovoliunlem1 25019 mdegleb 25582 eqscut2 27307 dmscut 27312 made0 27368 mulsuniflem 27604 istrkg2ld 27711 numedglnl 28404 usgr2pth0 29022 adjbd1o 31338 nmo 31730 dmrab 31737 difrab2 31738 mpomptxf 31905 ccfldextdgrr 32746 isros 33166 1stmbfm 33259 bnj976 33788 bnj1143 33801 bnj1533 33863 bnj864 33933 bnj983 33962 bnj1174 34014 bnj1175 34015 bnj1280 34031 cvmlift2lem12 34305 axacprim 34676 dfrecs2 34922 andnand1 35286 bj-snglc 35850 bj-disj2r 35909 bj-dfmpoa 35999 bj-mpomptALT 36000 mptsnunlem 36219 wl-df3xor2 36350 wl-df4-3mintru2 36368 wl-cases2-dnf 36381 wl-euae 36386 itg2addnc 36542 asindmre 36571 brres2 37136 brxrn2 37245 dfxrn2 37246 inxpxrn 37265 refsymrel2 37437 refsymrel3 37438 dfeqvrel2 37460 dfeqvrel3 37461 isopos 38050 dihglblem6 40211 dihglb2 40213 fgraphopab 41952 unielss 41967 dflim5 42079 ifpid2g 42244 ifpim23g 42246 rp-fakeanorass 42264 en2pr 42298 elmapintrab 42327 relnonrel 42338 undmrnresiss 42355 elintima 42404 relexp0eq 42452 iunrelexp0 42453 dffrege115 42729 frege131 42745 frege133 42747 ntrneikb 42845 elnev 43197 onfrALTlem5 43303 onfrALTlem5VD 43646 ndisj2 43738 ndmaovcom 45913 eliunxp2 47009 mpomptx2 47010 mo0sn 47500 i0oii 47552 io1ii 47553 alimp-no-surprise 47828 alsi-no-surprise 47843 |
Copyright terms: Public domain | W3C validator |