| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr2i | Structured version Visualization version GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
| 3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
| 3 | 1, 2 | bitr4i 278 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (𝜑 ↔ 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: con2bi 353 xorneg2 1520 sbrimvw 2090 2eu4 2653 2eu5 2654 r19.41v 3176 r3ex 3185 r19.41 3249 sbralie 3341 pm13.183 3649 euxfrw 3709 euxfr 3711 euind 3712 rmo4 3718 rmo3f 3722 2reu5lem3 3745 rmo3 3869 difin 4252 indifdi 4274 ab0orv 4363 dftr5 5243 axsepgfromrep 5274 inuni 5330 reusv2lem4 5381 rabxp 5713 elvvv 5741 eliunxp 5828 elidinxp 6042 imadisj 6078 idrefALT 6111 intirr 6118 resco 6250 funcnv3 6616 fncnv 6619 fun11 6620 fununi 6621 mptfnf 6683 f1mpt 7263 mpomptx 7528 uniuni 7764 frxp 8133 xpord2pred 8152 xpord2indlem 8154 oeeu 8623 ixp0x 8948 xpcomco 9084 1sdomOLD 9267 dffi3 9453 wemapsolem 9572 cardval3 9974 kmlem4 10176 kmlem12 10184 kmlem14 10186 kmlem15 10187 kmlem16 10188 fpwwe2 10665 axgroth4 10854 ltexprlem4 11061 bitsmod 16456 pythagtrip 16855 isstruct 17172 pgpfac1 20069 pgpfac 20073 basdif0 22908 ntreq0 23032 tgcmp 23356 tx1cn 23564 rnelfmlem 23907 phtpcer 24964 iscvsp 25098 caucfil 25254 minveclem1 25395 ovoliunlem1 25474 mdegleb 26040 eqscut2 27788 dmscut 27793 made0 27849 mulsuniflem 28112 istrkg2ld 28405 numedglnl 29090 usgr2pth0 29714 adjbd1o 32033 nmo 32438 dmrab 32445 difrab2 32446 mpomptxf 32623 ccfldextdgrr 33664 fldextrspunlsplem 33665 isros 34144 1stmbfm 34237 bnj976 34766 bnj1143 34779 bnj1533 34841 bnj864 34911 bnj983 34940 bnj1174 34992 bnj1175 34993 bnj1280 35009 cvmlift2lem12 35294 axacprim 35682 dfrecs2 35926 andnand1 36377 bj-snglc 36945 bj-disj2r 37004 bj-dfmpoa 37094 bj-mpomptALT 37095 mptsnunlem 37314 wl-df3xor2 37445 wl-df4-3mintru2 37463 wl-cases2-dnf 37488 wl-euae 37493 itg2addnc 37656 asindmre 37685 brres2 38244 brxrn2 38351 dfxrn2 38352 inxpxrn 38371 refsymrel2 38543 refsymrel3 38544 dfeqvrel2 38566 dfeqvrel3 38567 isopos 39156 dihglblem6 41317 dihglb2 41319 fgraphopab 43193 unielss 43208 dflim5 43319 ifpid2g 43483 ifpim23g 43485 rp-fakeanorass 43503 en2pr 43537 elmapintrab 43566 relnonrel 43577 undmrnresiss 43594 elintima 43643 relexp0eq 43691 iunrelexp0 43692 dffrege115 43968 frege131 43984 frege133 43986 ntrneikb 44084 elnev 44429 onfrALTlem5 44534 onfrALTlem5VD 44877 ndisj2 45028 ndmaovcom 47190 usgrexmpl2nb3 47966 eliunxp2 48223 mpomptx2 48224 mo0sn 48708 i0oii 48801 io1ii 48802 alimp-no-surprise 49395 alsi-no-surprise 49410 |
| Copyright terms: Public domain | W3C validator |