Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr2i | Structured version Visualization version GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr2i.2 | ⊢ (𝜒 ↔ 𝜓) |
3bitr2i.3 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr2i | ⊢ (𝜑 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 3bitr2i.2 | . . 3 ⊢ (𝜒 ↔ 𝜓) | |
3 | 1, 2 | bitr4i 277 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3bitr2i.3 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
5 | 3, 4 | bitri 274 | 1 ⊢ (𝜑 ↔ 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: con2bi 354 xorneg2 1517 sbrimvw 2095 2eu4 2657 2eu5 2658 euxfrw 3657 euxfr 3659 euind 3660 rmo4 3666 rmo3f 3670 2reu5lem3 3693 rmo3 3823 difin 4196 indifdi 4218 ab0orv 4313 axsepgfromrep 5222 reusv2lem4 5325 rabxp 5636 elvvv 5663 eliunxp 5749 elidinxp 5954 imadisj 5991 idrefALT 6023 intirr 6028 resco 6158 funcnv3 6511 fncnv 6514 fun11 6515 fununi 6516 mptfnf 6577 f1mpt 7143 mpomptx 7396 uniuni 7621 frxp 7976 oeeu 8443 ixp0x 8723 xpcomco 8858 1sdom 9034 dffi3 9199 wemapsolem 9318 cardval3 9719 kmlem4 9918 kmlem12 9926 kmlem14 9928 kmlem15 9929 kmlem16 9930 fpwwe2 10408 axgroth4 10597 ltexprlem4 10804 bitsmod 16152 pythagtrip 16544 isstruct 16862 pgpfac1 19692 pgpfac 19696 isassa 21072 basdif0 22112 ntreq0 22237 tgcmp 22561 tx1cn 22769 rnelfmlem 23112 phtpcer 24167 iscvsp 24300 caucfil 24456 minveclem1 24597 ovoliunlem1 24675 mdegleb 25238 istrkg2ld 26830 numedglnl 27523 usgr2pth0 28142 adjbd1o 30456 nelbOLDOLD 30826 nmo 30847 dmrab 30853 difrab2 30854 mpomptxf 31025 ccfldextdgrr 31751 isros 32145 1stmbfm 32236 bnj976 32766 bnj1143 32779 bnj1533 32841 bnj864 32911 bnj983 32940 bnj1174 32992 bnj1175 32993 bnj1280 33009 cvmlift2lem12 33285 axacprim 33657 xpord2pred 33801 xpord2ind 33803 eqscut2 34009 dmscut 34014 made0 34066 dfrecs2 34261 andnand1 34599 bj-snglc 35168 bj-disj2r 35227 bj-dfmpoa 35298 bj-mpomptALT 35299 mptsnunlem 35518 wl-df3xor2 35649 wl-df4-3mintru2 35667 wl-cases2-dnf 35680 wl-euae 35685 itg2addnc 35840 asindmre 35869 brres2 36415 brxrn2 36512 dfxrn2 36513 inxpxrn 36528 refsymrel2 36688 refsymrel3 36689 dfeqvrel2 36710 dfeqvrel3 36711 isopos 37201 dihglblem6 39361 dihglb2 39363 fgraphopab 41042 ifpid2g 41107 ifpim23g 41109 rp-fakeanorass 41127 en2pr 41161 elmapintrab 41191 relnonrel 41202 undmrnresiss 41219 elintima 41268 relexp0eq 41316 iunrelexp0 41317 dffrege115 41593 frege131 41609 frege133 41611 ntrneikb 41711 onfrALTlem5 42169 onfrALTlem5VD 42512 ndisj2 42606 ndmaovcom 44708 eliunxp2 45680 mpomptx2 45681 mo0sn 46172 i0oii 46224 io1ii 46225 alimp-no-surprise 46496 alsi-no-surprise 46511 |
Copyright terms: Public domain | W3C validator |