MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnor Structured version   Visualization version   GIF version

Theorem xnor 1505
Description: Two ways to write XNOR (exclusive not-or). (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xnor ((𝜑𝜓) ↔ ¬ (𝜑𝜓))

Proof of Theorem xnor
StepHypRef Expression
1 df-xor 1504 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
21con2bii 357 1 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wxo 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-xor 1504
This theorem is referenced by:  xorass  1508  xorneg2  1514  hadbi  1600  had0  1607  wl-df-3xor  35566  wl-3xorbi  35571  tsxo1  36222  tsxo2  36223
  Copyright terms: Public domain W3C validator