NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  0el Unicode version

Theorem 0el 3566
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem 0el
StepHypRef Expression
1 risset 2661 . 2
2 eq0 3564 . . 3
32rexbii 2639 . 2
41, 3bitri 240 1
Colors of variables: wff setvar class
Syntax hints:   wn 3   wb 176  wal 1540   wceq 1642   wcel 1710  wrex 2615  c0 3550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-rex 2620  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-dif 3215  df-nul 3551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator