New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 1cvsfin | Unicode version |
Description: If the universe is finite, then Ncfin 1c is the base two log of Ncfin . Theorem X.1.54 of [Rosser] p. 534. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
1cvsfin | Fin Sfin Ncfin 1c Ncfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cex 4143 | . . . 4 1c | |
2 | ncfinprop 4475 | . . . . 5 Fin 1c Ncfin 1c Nn 1c Ncfin 1c | |
3 | 2 | simpld 445 | . . . 4 Fin 1c Ncfin 1c Nn |
4 | 1, 3 | mpan2 652 | . . 3 Fin Ncfin 1c Nn |
5 | vvex 4110 | . . . 4 | |
6 | ncfinprop 4475 | . . . . 5 Fin Ncfin Nn Ncfin | |
7 | 6 | simpld 445 | . . . 4 Fin Ncfin Nn |
8 | 5, 7 | mpan2 652 | . . 3 Fin Ncfin Nn |
9 | 1, 2 | mpan2 652 | . . . . 5 Fin Ncfin 1c Nn 1c Ncfin 1c |
10 | 9 | simprd 449 | . . . 4 Fin 1c Ncfin 1c |
11 | 5, 6 | mpan2 652 | . . . . 5 Fin Ncfin Nn Ncfin |
12 | 11 | simprd 449 | . . . 4 Fin Ncfin |
13 | pw1eq 4144 | . . . . . . . 8 1 1 | |
14 | df1c2 4169 | . . . . . . . 8 1c 1 | |
15 | 13, 14 | syl6eqr 2403 | . . . . . . 7 1 1c |
16 | 15 | eleq1d 2419 | . . . . . 6 1 Ncfin 1c 1c Ncfin 1c |
17 | pweq 3726 | . . . . . . . 8 | |
18 | pwv 3887 | . . . . . . . 8 | |
19 | 17, 18 | syl6eq 2401 | . . . . . . 7 |
20 | 19 | eleq1d 2419 | . . . . . 6 Ncfin Ncfin |
21 | 16, 20 | anbi12d 691 | . . . . 5 1 Ncfin 1c Ncfin 1c Ncfin 1c Ncfin |
22 | 5, 21 | spcev 2947 | . . . 4 1c Ncfin 1c Ncfin 1 Ncfin 1c Ncfin |
23 | 10, 12, 22 | syl2anc 642 | . . 3 Fin 1 Ncfin 1c Ncfin |
24 | 4, 8, 23 | 3jca 1132 | . 2 Fin Ncfin 1c Nn Ncfin Nn 1 Ncfin 1c Ncfin |
25 | df-sfin 4447 | . 2 Sfin Ncfin 1c Ncfin Ncfin 1c Nn Ncfin Nn 1 Ncfin 1c Ncfin | |
26 | 24, 25 | sylibr 203 | 1 Fin Sfin Ncfin 1c Ncfin |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 w3a 934 wex 1541 wceq 1642 wcel 1710 cvv 2860 cpw 3723 1cc1c 4135 1 cpw1 4136 Nn cnnc 4374 Fin cfin 4377 Ncfin cncfin 4435 Sfin wsfin 4439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-ncfin 4443 df-sfin 4447 |
This theorem is referenced by: 1cspfin 4544 t1csfin1c 4546 vfinspss 4552 |
Copyright terms: Public domain | W3C validator |