Proof of Theorem 1cvsfin
| Step | Hyp | Ref
| Expression |
| 1 | | 1cex 4143 |
. . . 4
1c
 |
| 2 | | ncfinprop 4475 |
. . . . 5
  Fin 1c  Ncfin
1c
Nn 1c Ncfin
1c  |
| 3 | 2 | simpld 445 |
. . . 4
  Fin 1c  Ncfin 1c Nn  |
| 4 | 1, 3 | mpan2 652 |
. . 3
 Fin Ncfin 1c Nn  |
| 5 | | vvex 4110 |
. . . 4
 |
| 6 | | ncfinprop 4475 |
. . . . 5
  Fin  Ncfin Nn Ncfin    |
| 7 | 6 | simpld 445 |
. . . 4
  Fin  Ncfin Nn  |
| 8 | 5, 7 | mpan2 652 |
. . 3
 Fin Ncfin Nn  |
| 9 | 1, 2 | mpan2 652 |
. . . . 5
 Fin Ncfin
1c
Nn 1c Ncfin
1c  |
| 10 | 9 | simprd 449 |
. . . 4
 Fin 1c Ncfin 1c |
| 11 | 5, 6 | mpan2 652 |
. . . . 5
 Fin Ncfin Nn Ncfin    |
| 12 | 11 | simprd 449 |
. . . 4
 Fin Ncfin   |
| 13 | | pw1eq 4144 |
. . . . . . . 8
 1 1   |
| 14 | | df1c2 4169 |
. . . . . . . 8
1c
1  |
| 15 | 13, 14 | syl6eqr 2403 |
. . . . . . 7
 1 1c |
| 16 | 15 | eleq1d 2419 |
. . . . . 6
  1 Ncfin 1c
1c
Ncfin 1c  |
| 17 | | pweq 3726 |
. . . . . . . 8
 
   |
| 18 | | pwv 3887 |
. . . . . . . 8
  |
| 19 | 17, 18 | syl6eq 2401 |
. . . . . . 7
 
  |
| 20 | 19 | eleq1d 2419 |
. . . . . 6
  
Ncfin Ncfin    |
| 21 | 16, 20 | anbi12d 691 |
. . . . 5
   1
Ncfin 1c 
Ncfin  1c Ncfin 1c
Ncfin     |
| 22 | 5, 21 | spcev 2947 |
. . . 4
 1c Ncfin
1c Ncfin 
   1
Ncfin 1c 
Ncfin    |
| 23 | 10, 12, 22 | syl2anc 642 |
. . 3
 Fin    1 Ncfin
1c  Ncfin
   |
| 24 | 4, 8, 23 | 3jca 1132 |
. 2
 Fin Ncfin
1c
Nn Ncfin Nn    1
Ncfin 1c 
Ncfin     |
| 25 | | df-sfin 4447 |
. 2
Sfin Ncfin
1c
Ncfin  Ncfin 1c Nn Ncfin Nn    1 Ncfin
1c  Ncfin
    |
| 26 | 24, 25 | sylibr 203 |
1
 Fin Sfin
Ncfin 1c Ncfin    |