NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  1cvsfin GIF version

Theorem 1cvsfin 4543
Description: If the universe is finite, then Ncfin 1c is the base two log of Ncfin V. Theorem X.1.54 of [Rosser] p. 534. (Contributed by SF, 29-Jan-2015.)
Assertion
Ref Expression
1cvsfin (V FinSfin ( Ncfin 1c, Ncfin V))

Proof of Theorem 1cvsfin
StepHypRef Expression
1 1cex 4143 . . . 4 1c V
2 ncfinprop 4475 . . . . 5 ((V Fin 1c V) → ( Ncfin 1c Nn 1c Ncfin 1c))
32simpld 445 . . . 4 ((V Fin 1c V) → Ncfin 1c Nn )
41, 3mpan2 652 . . 3 (V FinNcfin 1c Nn )
5 vvex 4110 . . . 4 V V
6 ncfinprop 4475 . . . . 5 ((V Fin V V) → ( Ncfin V Nn V Ncfin V))
76simpld 445 . . . 4 ((V Fin V V) → Ncfin V Nn )
85, 7mpan2 652 . . 3 (V FinNcfin V Nn )
91, 2mpan2 652 . . . . 5 (V Fin → ( Ncfin 1c Nn 1c Ncfin 1c))
109simprd 449 . . . 4 (V Fin → 1c Ncfin 1c)
115, 6mpan2 652 . . . . 5 (V Fin → ( Ncfin V Nn V Ncfin V))
1211simprd 449 . . . 4 (V Fin → V Ncfin V)
13 pw1eq 4144 . . . . . . . 8 (a = V → 1a = 1V)
14 df1c2 4169 . . . . . . . 8 1c = 1V
1513, 14syl6eqr 2403 . . . . . . 7 (a = V → 1a = 1c)
1615eleq1d 2419 . . . . . 6 (a = V → (1a Ncfin 1c ↔ 1c Ncfin 1c))
17 pweq 3726 . . . . . . . 8 (a = V → a = V)
18 pwv 3887 . . . . . . . 8 V = V
1917, 18syl6eq 2401 . . . . . . 7 (a = V → a = V)
2019eleq1d 2419 . . . . . 6 (a = V → (a Ncfin V ↔ V Ncfin V))
2116, 20anbi12d 691 . . . . 5 (a = V → ((1a Ncfin 1c a Ncfin V) ↔ (1c Ncfin 1c V Ncfin V)))
225, 21spcev 2947 . . . 4 ((1c Ncfin 1c V Ncfin V) → a(1a Ncfin 1c a Ncfin V))
2310, 12, 22syl2anc 642 . . 3 (V Fina(1a Ncfin 1c a Ncfin V))
244, 8, 233jca 1132 . 2 (V Fin → ( Ncfin 1c Nn Ncfin V Nn a(1a Ncfin 1c a Ncfin V)))
25 df-sfin 4447 . 2 ( Sfin ( Ncfin 1c, Ncfin V) ↔ ( Ncfin 1c Nn Ncfin V Nn a(1a Ncfin 1c a Ncfin V)))
2624, 25sylibr 203 1 (V FinSfin ( Ncfin 1c, Ncfin V))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cpw 3723  1cc1c 4135  1cpw1 4136   Nn cnnc 4374   Fin cfin 4377   Ncfin cncfin 4435   Sfin wsfin 4439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-ncfin 4443  df-sfin 4447
This theorem is referenced by:  1cspfin  4544  t1csfin1c  4546  vfinspss  4552
  Copyright terms: Public domain W3C validator