![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > 1cvsfin | GIF version |
Description: If the universe is finite, then Ncfin 1c is the base two log of Ncfin V. Theorem X.1.54 of [Rosser] p. 534. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
1cvsfin | ⊢ (V ∈ Fin → Sfin ( Ncfin 1c, Ncfin V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1cex 4142 | . . . 4 ⊢ 1c ∈ V | |
2 | ncfinprop 4474 | . . . . 5 ⊢ ((V ∈ Fin ∧ 1c ∈ V) → ( Ncfin 1c ∈ Nn ∧ 1c ∈ Ncfin 1c)) | |
3 | 2 | simpld 445 | . . . 4 ⊢ ((V ∈ Fin ∧ 1c ∈ V) → Ncfin 1c ∈ Nn ) |
4 | 1, 3 | mpan2 652 | . . 3 ⊢ (V ∈ Fin → Ncfin 1c ∈ Nn ) |
5 | vvex 4109 | . . . 4 ⊢ V ∈ V | |
6 | ncfinprop 4474 | . . . . 5 ⊢ ((V ∈ Fin ∧ V ∈ V) → ( Ncfin V ∈ Nn ∧ V ∈ Ncfin V)) | |
7 | 6 | simpld 445 | . . . 4 ⊢ ((V ∈ Fin ∧ V ∈ V) → Ncfin V ∈ Nn ) |
8 | 5, 7 | mpan2 652 | . . 3 ⊢ (V ∈ Fin → Ncfin V ∈ Nn ) |
9 | 1, 2 | mpan2 652 | . . . . 5 ⊢ (V ∈ Fin → ( Ncfin 1c ∈ Nn ∧ 1c ∈ Ncfin 1c)) |
10 | 9 | simprd 449 | . . . 4 ⊢ (V ∈ Fin → 1c ∈ Ncfin 1c) |
11 | 5, 6 | mpan2 652 | . . . . 5 ⊢ (V ∈ Fin → ( Ncfin V ∈ Nn ∧ V ∈ Ncfin V)) |
12 | 11 | simprd 449 | . . . 4 ⊢ (V ∈ Fin → V ∈ Ncfin V) |
13 | pw1eq 4143 | . . . . . . . 8 ⊢ (a = V → ℘1a = ℘1V) | |
14 | df1c2 4168 | . . . . . . . 8 ⊢ 1c = ℘1V | |
15 | 13, 14 | syl6eqr 2403 | . . . . . . 7 ⊢ (a = V → ℘1a = 1c) |
16 | 15 | eleq1d 2419 | . . . . . 6 ⊢ (a = V → (℘1a ∈ Ncfin 1c ↔ 1c ∈ Ncfin 1c)) |
17 | pweq 3725 | . . . . . . . 8 ⊢ (a = V → ℘a = ℘V) | |
18 | pwv 3886 | . . . . . . . 8 ⊢ ℘V = V | |
19 | 17, 18 | syl6eq 2401 | . . . . . . 7 ⊢ (a = V → ℘a = V) |
20 | 19 | eleq1d 2419 | . . . . . 6 ⊢ (a = V → (℘a ∈ Ncfin V ↔ V ∈ Ncfin V)) |
21 | 16, 20 | anbi12d 691 | . . . . 5 ⊢ (a = V → ((℘1a ∈ Ncfin 1c ∧ ℘a ∈ Ncfin V) ↔ (1c ∈ Ncfin 1c ∧ V ∈ Ncfin V))) |
22 | 5, 21 | spcev 2946 | . . . 4 ⊢ ((1c ∈ Ncfin 1c ∧ V ∈ Ncfin V) → ∃a(℘1a ∈ Ncfin 1c ∧ ℘a ∈ Ncfin V)) |
23 | 10, 12, 22 | syl2anc 642 | . . 3 ⊢ (V ∈ Fin → ∃a(℘1a ∈ Ncfin 1c ∧ ℘a ∈ Ncfin V)) |
24 | 4, 8, 23 | 3jca 1132 | . 2 ⊢ (V ∈ Fin → ( Ncfin 1c ∈ Nn ∧ Ncfin V ∈ Nn ∧ ∃a(℘1a ∈ Ncfin 1c ∧ ℘a ∈ Ncfin V))) |
25 | df-sfin 4446 | . 2 ⊢ ( Sfin ( Ncfin 1c, Ncfin V) ↔ ( Ncfin 1c ∈ Nn ∧ Ncfin V ∈ Nn ∧ ∃a(℘1a ∈ Ncfin 1c ∧ ℘a ∈ Ncfin V))) | |
26 | 24, 25 | sylibr 203 | 1 ⊢ (V ∈ Fin → Sfin ( Ncfin 1c, Ncfin V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ℘cpw 3722 1cc1c 4134 ℘1cpw1 4135 Nn cnnc 4373 Fin cfin 4376 Ncfin cncfin 4434 Sfin wsfin 4438 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-ncfin 4442 df-sfin 4446 |
This theorem is referenced by: 1cspfin 4543 t1csfin1c 4545 vfinspss 4551 |
Copyright terms: Public domain | W3C validator |