New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vfinspnn | Unicode version |
Description: If the universe is finite, then Spfin is a subset of the nonempty naturals. Theorem X.1.53 of [Rosser] p. 534. (Contributed by SF, 27-Jan-2015.) |
Ref | Expression |
---|---|
vfinspnn | Fin Spfin Nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vvex 4110 | . . . . 5 | |
2 | ncfinprop 4475 | . . . . 5 Fin Ncfin Nn Ncfin | |
3 | 1, 2 | mpan2 652 | . . . 4 Fin Ncfin Nn Ncfin |
4 | ne0i 3557 | . . . . 5 Ncfin Ncfin | |
5 | 4 | anim2i 552 | . . . 4 Ncfin Nn Ncfin Ncfin Nn Ncfin |
6 | 3, 5 | syl 15 | . . 3 Fin Ncfin Nn Ncfin |
7 | eldifsn 3840 | . . 3 Ncfin Nn Ncfin Nn Ncfin | |
8 | 6, 7 | sylibr 203 | . 2 Fin Ncfin Nn |
9 | df-sfin 4447 | . . . . . 6 Sfin Nn Nn 1 | |
10 | ne0i 3557 | . . . . . . . . . 10 1 | |
11 | 10 | adantr 451 | . . . . . . . . 9 1 |
12 | 11 | exlimiv 1634 | . . . . . . . 8 1 |
13 | eldifsn 3840 | . . . . . . . . 9 Nn Nn | |
14 | 13 | biimpri 197 | . . . . . . . 8 Nn Nn |
15 | 12, 14 | sylan2 460 | . . . . . . 7 Nn 1 Nn |
16 | 15 | 3adant2 974 | . . . . . 6 Nn Nn 1 Nn |
17 | 9, 16 | sylbi 187 | . . . . 5 Sfin Nn |
18 | 17 | adantl 452 | . . . 4 Nn Sfin Nn |
19 | 18 | ax-gen 1546 | . . 3 Nn Sfin Nn |
20 | 19 | rgenw 2682 | . 2 Spfin Nn Sfin Nn |
21 | nncex 4397 | . . . 4 Nn | |
22 | snex 4112 | . . . 4 | |
23 | 21, 22 | difex 4108 | . . 3 Nn |
24 | spfininduct 4541 | . . 3 Nn Ncfin Nn Spfin Nn Sfin Nn Spfin Nn | |
25 | 23, 24 | mp3an1 1264 | . 2 Ncfin Nn Spfin Nn Sfin Nn Spfin Nn |
26 | 8, 20, 25 | sylancl 643 | 1 Fin Spfin Nn |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 w3a 934 wal 1540 wex 1541 wcel 1710 wne 2517 wral 2615 cvv 2860 cdif 3207 wss 3258 c0 3551 cpw 3723 csn 3738 1 cpw1 4136 Nn cnnc 4374 Fin cfin 4377 Ncfin cncfin 4435 Sfin wsfin 4439 Spfin cspfin 4440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-ncfin 4443 df-sfin 4447 df-spfin 4448 |
This theorem is referenced by: vfinncvntsp 4550 vfinspsslem1 4551 vfinncsp 4555 |
Copyright terms: Public domain | W3C validator |