| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2eu4 | Unicode version | ||
| Description: This theorem provides us
with a definition of double existential
uniqueness ("exactly one |
| Ref | Expression |
|---|---|
| 2eu4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1619 |
. . . 4
| |
| 2 | 1 | eu3 2230 |
. . 3
|
| 3 | nfv 1619 |
. . . 4
| |
| 4 | 3 | eu3 2230 |
. . 3
|
| 5 | 2, 4 | anbi12i 678 |
. 2
|
| 6 | an4 797 |
. 2
| |
| 7 | excom 1741 |
. . . . 5
| |
| 8 | 7 | anbi2i 675 |
. . . 4
|
| 9 | anidm 625 |
. . . 4
| |
| 10 | 8, 9 | bitri 240 |
. . 3
|
| 11 | 19.26 1593 |
. . . . . . . 8
| |
| 12 | nfa1 1788 |
. . . . . . . . . . 11
| |
| 13 | 12 | 19.3 1785 |
. . . . . . . . . 10
|
| 14 | 13 | anbi2i 675 |
. . . . . . . . 9
|
| 15 | jcab 833 |
. . . . . . . . . . . . 13
| |
| 16 | 15 | albii 1566 |
. . . . . . . . . . . 12
|
| 17 | 19.26 1593 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | bitri 240 |
. . . . . . . . . . 11
|
| 19 | 18 | albii 1566 |
. . . . . . . . . 10
|
| 20 | 19.26 1593 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | bitri 240 |
. . . . . . . . 9
|
| 22 | 14, 21 | bitr4i 243 |
. . . . . . . 8
|
| 23 | 11, 22 | bitr2i 241 |
. . . . . . 7
|
| 24 | 19.26 1593 |
. . . . . . . . 9
| |
| 25 | nfa1 1788 |
. . . . . . . . . . 11
| |
| 26 | 25 | 19.3 1785 |
. . . . . . . . . 10
|
| 27 | alcom 1737 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | anbi12i 678 |
. . . . . . . . 9
|
| 29 | 24, 28 | bitri 240 |
. . . . . . . 8
|
| 30 | 29 | albii 1566 |
. . . . . . 7
|
| 31 | 23, 30 | bitr4i 243 |
. . . . . 6
|
| 32 | 19.23v 1891 |
. . . . . . . 8
| |
| 33 | 19.23v 1891 |
. . . . . . . 8
| |
| 34 | 32, 33 | anbi12i 678 |
. . . . . . 7
|
| 35 | 34 | 2albii 1567 |
. . . . . 6
|
| 36 | nfe1 1732 |
. . . . . . . 8
| |
| 37 | nfv 1619 |
. . . . . . . 8
| |
| 38 | 36, 37 | nfim 1813 |
. . . . . . 7
|
| 39 | nfe1 1732 |
. . . . . . . 8
| |
| 40 | nfv 1619 |
. . . . . . . 8
| |
| 41 | 39, 40 | nfim 1813 |
. . . . . . 7
|
| 42 | 38, 41 | aaan 1884 |
. . . . . 6
|
| 43 | 31, 35, 42 | 3bitri 262 |
. . . . 5
|
| 44 | 43 | 2exbii 1583 |
. . . 4
|
| 45 | eeanv 1913 |
. . . 4
| |
| 46 | 44, 45 | bitr2i 241 |
. . 3
|
| 47 | 10, 46 | anbi12i 678 |
. 2
|
| 48 | 5, 6, 47 | 3bitri 262 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 |
| This theorem is referenced by: 2eu5 2288 2eu6 2289 |
| Copyright terms: Public domain | W3C validator |