New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2eu4 | Unicode version |
Description: This theorem provides us with a definition of double existential uniqueness ("exactly one and exactly one "). Naively one might think (incorrectly) that it could be defined by . See 2eu1 2284 for a condition under which the naive definition holds and 2exeu 2281 for a one-way implication. See 2eu5 2288 and 2eu8 2291 for alternate definitions. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2eu4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . 4 | |
2 | 1 | eu3 2230 | . . 3 |
3 | nfv 1619 | . . . 4 | |
4 | 3 | eu3 2230 | . . 3 |
5 | 2, 4 | anbi12i 678 | . 2 |
6 | an4 797 | . 2 | |
7 | excom 1741 | . . . . 5 | |
8 | 7 | anbi2i 675 | . . . 4 |
9 | anidm 625 | . . . 4 | |
10 | 8, 9 | bitri 240 | . . 3 |
11 | 19.26 1593 | . . . . . . . 8 | |
12 | nfa1 1788 | . . . . . . . . . . 11 | |
13 | 12 | 19.3 1785 | . . . . . . . . . 10 |
14 | 13 | anbi2i 675 | . . . . . . . . 9 |
15 | jcab 833 | . . . . . . . . . . . . 13 | |
16 | 15 | albii 1566 | . . . . . . . . . . . 12 |
17 | 19.26 1593 | . . . . . . . . . . . 12 | |
18 | 16, 17 | bitri 240 | . . . . . . . . . . 11 |
19 | 18 | albii 1566 | . . . . . . . . . 10 |
20 | 19.26 1593 | . . . . . . . . . 10 | |
21 | 19, 20 | bitri 240 | . . . . . . . . 9 |
22 | 14, 21 | bitr4i 243 | . . . . . . . 8 |
23 | 11, 22 | bitr2i 241 | . . . . . . 7 |
24 | 19.26 1593 | . . . . . . . . 9 | |
25 | nfa1 1788 | . . . . . . . . . . 11 | |
26 | 25 | 19.3 1785 | . . . . . . . . . 10 |
27 | alcom 1737 | . . . . . . . . . 10 | |
28 | 26, 27 | anbi12i 678 | . . . . . . . . 9 |
29 | 24, 28 | bitri 240 | . . . . . . . 8 |
30 | 29 | albii 1566 | . . . . . . 7 |
31 | 23, 30 | bitr4i 243 | . . . . . 6 |
32 | 19.23v 1891 | . . . . . . . 8 | |
33 | 19.23v 1891 | . . . . . . . 8 | |
34 | 32, 33 | anbi12i 678 | . . . . . . 7 |
35 | 34 | 2albii 1567 | . . . . . 6 |
36 | nfe1 1732 | . . . . . . . 8 | |
37 | nfv 1619 | . . . . . . . 8 | |
38 | 36, 37 | nfim 1813 | . . . . . . 7 |
39 | nfe1 1732 | . . . . . . . 8 | |
40 | nfv 1619 | . . . . . . . 8 | |
41 | 39, 40 | nfim 1813 | . . . . . . 7 |
42 | 38, 41 | aaan 1884 | . . . . . 6 |
43 | 31, 35, 42 | 3bitri 262 | . . . . 5 |
44 | 43 | 2exbii 1583 | . . . 4 |
45 | eeanv 1913 | . . . 4 | |
46 | 44, 45 | bitr2i 241 | . . 3 |
47 | 10, 46 | anbi12i 678 | . 2 |
48 | 5, 6, 47 | 3bitri 262 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 |
This theorem is referenced by: 2eu5 2288 2eu6 2289 |
Copyright terms: Public domain | W3C validator |