| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 2rexbii | Unicode version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.) | 
| Ref | Expression | 
|---|---|
| ralbii.1 | 
 | 
| Ref | Expression | 
|---|---|
| 2rexbii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralbii.1 | 
. . 3
 | |
| 2 | 1 | rexbii 2640 | 
. 2
 | 
| 3 | 2 | rexbii 2640 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-rex 2621 | 
| This theorem is referenced by: 3reeanv 2780 addccom 4407 addcass 4416 ncfinraise 4482 ncfinlower 4484 nnpweq 4524 dfxp2 5114 peano4nc 6151 sbth 6207 | 
| Copyright terms: Public domain | W3C validator |