New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > addcass | Unicode version |
Description: Cardinal addition is associative. Theorem X.1.11, corollary 1 of [Rosser] p. 277. (Contributed by SF, 17-Jan-2015.) |
Ref | Expression |
---|---|
addcass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . . . . . . . . . . 11 | |
2 | 1 | anbi2i 675 | . . . . . . . . . 10 |
3 | an12 772 | . . . . . . . . . 10 | |
4 | 2, 3 | bitri 240 | . . . . . . . . 9 |
5 | indir 3504 | . . . . . . . . . . . 12 | |
6 | 5 | eqeq1i 2360 | . . . . . . . . . . 11 |
7 | un00 3587 | . . . . . . . . . . 11 | |
8 | 6, 7 | bitr4i 243 | . . . . . . . . . 10 |
9 | 8 | anbi2i 675 | . . . . . . . . 9 |
10 | indi 3502 | . . . . . . . . . . . 12 | |
11 | 10 | eqeq1i 2360 | . . . . . . . . . . 11 |
12 | un00 3587 | . . . . . . . . . . 11 | |
13 | 11, 12 | bitr4i 243 | . . . . . . . . . 10 |
14 | 13 | anbi2i 675 | . . . . . . . . 9 |
15 | 4, 9, 14 | 3bitr4i 268 | . . . . . . . 8 |
16 | unass 3421 | . . . . . . . . 9 | |
17 | 16 | eqeq2i 2363 | . . . . . . . 8 |
18 | 15, 17 | anbi12i 678 | . . . . . . 7 |
19 | anass 630 | . . . . . . 7 | |
20 | anass 630 | . . . . . . 7 | |
21 | 18, 19, 20 | 3bitr3i 266 | . . . . . 6 |
22 | anass 630 | . . . . . . . . 9 | |
23 | an12 772 | . . . . . . . . 9 | |
24 | 22, 23 | bitri 240 | . . . . . . . 8 |
25 | 24 | exbii 1582 | . . . . . . 7 |
26 | vex 2863 | . . . . . . . . 9 | |
27 | vex 2863 | . . . . . . . . 9 | |
28 | 26, 27 | unex 4107 | . . . . . . . 8 |
29 | ineq1 3451 | . . . . . . . . . . 11 | |
30 | 29 | eqeq1d 2361 | . . . . . . . . . 10 |
31 | uneq1 3412 | . . . . . . . . . . 11 | |
32 | 31 | eqeq2d 2364 | . . . . . . . . . 10 |
33 | 30, 32 | anbi12d 691 | . . . . . . . . 9 |
34 | 33 | anbi2d 684 | . . . . . . . 8 |
35 | 28, 34 | ceqsexv 2895 | . . . . . . 7 |
36 | 25, 35 | bitri 240 | . . . . . 6 |
37 | anass 630 | . . . . . . . . 9 | |
38 | an12 772 | . . . . . . . . 9 | |
39 | 37, 38 | bitri 240 | . . . . . . . 8 |
40 | 39 | exbii 1582 | . . . . . . 7 |
41 | vex 2863 | . . . . . . . . 9 | |
42 | 27, 41 | unex 4107 | . . . . . . . 8 |
43 | ineq2 3452 | . . . . . . . . . . 11 | |
44 | 43 | eqeq1d 2361 | . . . . . . . . . 10 |
45 | uneq2 3413 | . . . . . . . . . . 11 | |
46 | 45 | eqeq2d 2364 | . . . . . . . . . 10 |
47 | 44, 46 | anbi12d 691 | . . . . . . . . 9 |
48 | 47 | anbi2d 684 | . . . . . . . 8 |
49 | 42, 48 | ceqsexv 2895 | . . . . . . 7 |
50 | 40, 49 | bitri 240 | . . . . . 6 |
51 | 21, 36, 50 | 3bitr4i 268 | . . . . 5 |
52 | 51 | rexbii 2640 | . . . 4 |
53 | 52 | 2rexbii 2642 | . . 3 |
54 | eladdc 4399 | . . . 4 | |
55 | df-rex 2621 | . . . . 5 | |
56 | rexcom4 2879 | . . . . . 6 | |
57 | rexcom4 2879 | . . . . . . . . . 10 | |
58 | r19.42v 2766 | . . . . . . . . . . 11 | |
59 | 58 | exbii 1582 | . . . . . . . . . 10 |
60 | 57, 59 | bitri 240 | . . . . . . . . 9 |
61 | 60 | rexbii 2640 | . . . . . . . 8 |
62 | rexcom4 2879 | . . . . . . . 8 | |
63 | 61, 62 | bitri 240 | . . . . . . 7 |
64 | 63 | rexbii 2640 | . . . . . 6 |
65 | r19.41v 2765 | . . . . . . . 8 | |
66 | r19.41v 2765 | . . . . . . . . 9 | |
67 | 66 | rexbii 2640 | . . . . . . . 8 |
68 | eladdc 4399 | . . . . . . . . 9 | |
69 | 68 | anbi1i 676 | . . . . . . . 8 |
70 | 65, 67, 69 | 3bitr4ri 269 | . . . . . . 7 |
71 | 70 | exbii 1582 | . . . . . 6 |
72 | 56, 64, 71 | 3bitr4ri 269 | . . . . 5 |
73 | 55, 72 | bitri 240 | . . . 4 |
74 | 54, 73 | bitri 240 | . . 3 |
75 | eladdc 4399 | . . . 4 | |
76 | df-rex 2621 | . . . . . 6 | |
77 | rexcom4 2879 | . . . . . . 7 | |
78 | rexcom4 2879 | . . . . . . . 8 | |
79 | 78 | rexbii 2640 | . . . . . . 7 |
80 | r19.41v 2765 | . . . . . . . . 9 | |
81 | r19.41v 2765 | . . . . . . . . . 10 | |
82 | 81 | rexbii 2640 | . . . . . . . . 9 |
83 | eladdc 4399 | . . . . . . . . . 10 | |
84 | 83 | anbi1i 676 | . . . . . . . . 9 |
85 | 80, 82, 84 | 3bitr4ri 269 | . . . . . . . 8 |
86 | 85 | exbii 1582 | . . . . . . 7 |
87 | 77, 79, 86 | 3bitr4ri 269 | . . . . . 6 |
88 | 76, 87 | bitri 240 | . . . . 5 |
89 | 88 | rexbii 2640 | . . . 4 |
90 | 75, 89 | bitri 240 | . . 3 |
91 | 53, 74, 90 | 3bitr4i 268 | . 2 |
92 | 91 | eqriv 2350 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 wcel 1710 wrex 2616 cun 3208 cin 3209 c0 3551 cplc 4376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-addc 4379 |
This theorem is referenced by: addc32 4417 addc4 4418 addc6 4419 nncaddccl 4420 ltfinirr 4458 leltfintr 4459 ltfintr 4460 lefinlteq 4464 ltlefin 4469 sucoddeven 4512 evenodddisj 4517 sfinltfin 4536 lectr 6212 addceq0 6220 nclenn 6250 lecadd2 6267 ncslesuc 6268 nncdiv3 6278 nnc3n3p1 6279 nnc3n3p2 6280 nnc3p1n3p2 6281 nchoicelem1 6290 nchoicelem2 6291 |
Copyright terms: Public domain | W3C validator |