New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbth | Unicode version |
Description: The Schroder-Bernstein Theorem. This theorem gives the antisymmetry law for cardinal less than or equal. Translated out, it means that, if is no larger than and is no larger than , then Nc Nc . Theorem XI.2.20 of [Rosser] p. 376. (Contributed by SF, 11-Mar-2015.) |
Ref | Expression |
---|---|
sbth | NC NC c c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlecg 6113 | . . . 4 NC NC c | |
2 | brlecg 6113 | . . . . 5 NC NC c | |
3 | 2 | ancoms 439 | . . . 4 NC NC c |
4 | 1, 3 | anbi12d 691 | . . 3 NC NC c c |
5 | reeanv 2779 | . . . . 5 | |
6 | 5 | 2rexbii 2642 | . . . 4 |
7 | reeanv 2779 | . . . 4 | |
8 | 6, 7 | bitri 240 | . . 3 |
9 | 4, 8 | syl6bbr 254 | . 2 NC NC c c |
10 | ncseqnc 6129 | . . . . . 6 NC Nc | |
11 | ncseqnc 6129 | . . . . . 6 NC Nc | |
12 | 10, 11 | bi2anan9 843 | . . . . 5 NC NC Nc Nc |
13 | 12 | biimpar 471 | . . . 4 NC NC Nc Nc |
14 | simplr 731 | . . . . . . . . . . 11 | |
15 | ensym 6038 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylib 188 | . . . . . . . . . 10 |
17 | simprl 732 | . . . . . . . . . . 11 | |
18 | simpll 730 | . . . . . . . . . . 11 | |
19 | simprr 733 | . . . . . . . . . . 11 | |
20 | sbthlem3 6206 | . . . . . . . . . . 11 | |
21 | 14, 17, 18, 19, 20 | syl22anc 1183 | . . . . . . . . . 10 |
22 | entr 6039 | . . . . . . . . . 10 | |
23 | 16, 21, 22 | syl2anc 642 | . . . . . . . . 9 |
24 | entr 6039 | . . . . . . . . 9 | |
25 | 23, 18, 24 | syl2anc 642 | . . . . . . . 8 |
26 | 25 | ex 423 | . . . . . . 7 |
27 | elnc 6126 | . . . . . . . 8 Nc | |
28 | elnc 6126 | . . . . . . . 8 Nc | |
29 | 27, 28 | anbi12i 678 | . . . . . . 7 Nc Nc |
30 | vex 2863 | . . . . . . . . 9 | |
31 | 30 | eqnc 6128 | . . . . . . . 8 Nc Nc |
32 | 31 | imbi2i 303 | . . . . . . 7 Nc Nc |
33 | 26, 29, 32 | 3imtr4i 257 | . . . . . 6 Nc Nc Nc Nc |
34 | 33 | rexlimivv 2744 | . . . . 5 Nc Nc Nc Nc |
35 | rexeq 2809 | . . . . . . 7 Nc Nc | |
36 | rexeq 2809 | . . . . . . . 8 Nc Nc | |
37 | 36 | rexbidv 2636 | . . . . . . 7 Nc Nc Nc Nc |
38 | 35, 37 | sylan9bbr 681 | . . . . . 6 Nc Nc Nc Nc |
39 | eqeq12 2365 | . . . . . 6 Nc Nc Nc Nc | |
40 | 38, 39 | imbi12d 311 | . . . . 5 Nc Nc Nc Nc Nc Nc |
41 | 34, 40 | mpbiri 224 | . . . 4 Nc Nc |
42 | 13, 41 | syl 15 | . . 3 NC NC |
43 | 42 | rexlimdvva 2746 | . 2 NC NC |
44 | 9, 43 | sylbid 206 | 1 NC NC c c |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wrex 2616 wss 3258 class class class wbr 4640 cen 6029 NC cncs 6089 c clec 6090 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-fix 5741 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-clos1 5874 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-lec 6100 df-nc 6102 |
This theorem is referenced by: ltlenlec 6208 leltctr 6213 lecponc 6214 nclenn 6250 ncvsq 6257 |
Copyright terms: Public domain | W3C validator |