New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbth | Unicode version |
Description: The Schroder-Bernstein Theorem. This theorem gives the antisymmetry law for cardinal less than or equal. Translated out, it means that, if is no larger than and is no larger than , then Nc Nc . Theorem XI.2.20 of [Rosser] p. 376. (Contributed by SF, 11-Mar-2015.) |
Ref | Expression |
---|---|
sbth | NC NC c c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlecg 6112 | . . . 4 NC NC c | |
2 | brlecg 6112 | . . . . 5 NC NC c | |
3 | 2 | ancoms 439 | . . . 4 NC NC c |
4 | 1, 3 | anbi12d 691 | . . 3 NC NC c c |
5 | reeanv 2778 | . . . . 5 | |
6 | 5 | 2rexbii 2641 | . . . 4 |
7 | reeanv 2778 | . . . 4 | |
8 | 6, 7 | bitri 240 | . . 3 |
9 | 4, 8 | syl6bbr 254 | . 2 NC NC c c |
10 | ncseqnc 6128 | . . . . . 6 NC Nc | |
11 | ncseqnc 6128 | . . . . . 6 NC Nc | |
12 | 10, 11 | bi2anan9 843 | . . . . 5 NC NC Nc Nc |
13 | 12 | biimpar 471 | . . . 4 NC NC Nc Nc |
14 | simplr 731 | . . . . . . . . . . 11 | |
15 | ensym 6037 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylib 188 | . . . . . . . . . 10 |
17 | simprl 732 | . . . . . . . . . . 11 | |
18 | simpll 730 | . . . . . . . . . . 11 | |
19 | simprr 733 | . . . . . . . . . . 11 | |
20 | sbthlem3 6205 | . . . . . . . . . . 11 | |
21 | 14, 17, 18, 19, 20 | syl22anc 1183 | . . . . . . . . . 10 |
22 | entr 6038 | . . . . . . . . . 10 | |
23 | 16, 21, 22 | syl2anc 642 | . . . . . . . . 9 |
24 | entr 6038 | . . . . . . . . 9 | |
25 | 23, 18, 24 | syl2anc 642 | . . . . . . . 8 |
26 | 25 | ex 423 | . . . . . . 7 |
27 | elnc 6125 | . . . . . . . 8 Nc | |
28 | elnc 6125 | . . . . . . . 8 Nc | |
29 | 27, 28 | anbi12i 678 | . . . . . . 7 Nc Nc |
30 | vex 2862 | . . . . . . . . 9 | |
31 | 30 | eqnc 6127 | . . . . . . . 8 Nc Nc |
32 | 31 | imbi2i 303 | . . . . . . 7 Nc Nc |
33 | 26, 29, 32 | 3imtr4i 257 | . . . . . 6 Nc Nc Nc Nc |
34 | 33 | rexlimivv 2743 | . . . . 5 Nc Nc Nc Nc |
35 | rexeq 2808 | . . . . . . 7 Nc Nc | |
36 | rexeq 2808 | . . . . . . . 8 Nc Nc | |
37 | 36 | rexbidv 2635 | . . . . . . 7 Nc Nc Nc Nc |
38 | 35, 37 | sylan9bbr 681 | . . . . . 6 Nc Nc Nc Nc |
39 | eqeq12 2365 | . . . . . 6 Nc Nc Nc Nc | |
40 | 38, 39 | imbi12d 311 | . . . . 5 Nc Nc Nc Nc Nc Nc |
41 | 34, 40 | mpbiri 224 | . . . 4 Nc Nc |
42 | 13, 41 | syl 15 | . . 3 NC NC |
43 | 42 | rexlimdvva 2745 | . 2 NC NC |
44 | 9, 43 | sylbid 206 | 1 NC NC c c |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wrex 2615 wss 3257 class class class wbr 4639 cen 6028 NC cncs 6088 c clec 6089 Nc cnc 6091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-2nd 4797 df-txp 5736 df-fix 5740 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-clos1 5873 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-lec 6099 df-nc 6101 |
This theorem is referenced by: ltlenlec 6207 leltctr 6212 lecponc 6213 nclenn 6249 ncvsq 6256 |
Copyright terms: Public domain | W3C validator |