NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2rexbii GIF version

Theorem 2rexbii 2642
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
Hypothesis
Ref Expression
ralbii.1 (φψ)
Assertion
Ref Expression
2rexbii (x A y B φx A y B ψ)

Proof of Theorem 2rexbii
StepHypRef Expression
1 ralbii.1 . . 3 (φψ)
21rexbii 2640 . 2 (y B φy B ψ)
32rexbii 2640 1 (x A y B φx A y B ψ)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-rex 2621
This theorem is referenced by:  3reeanv  2780  addccom  4407  addcass  4416  ncfinraise  4482  ncfinlower  4484  nnpweq  4524  dfxp2  5114  peano4nc  6151  sbth  6207
  Copyright terms: Public domain W3C validator