| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 3bitr4d | Unicode version | ||
| Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| 3bitr4d.1 | 
 | 
| 3bitr4d.2 | 
 | 
| 3bitr4d.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3bitr4d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3bitr4d.2 | 
. 2
 | |
| 2 | 3bitr4d.1 | 
. . 3
 | |
| 3 | 3bitr4d.3 | 
. . 3
 | |
| 4 | 2, 3 | bitr4d 247 | 
. 2
 | 
| 5 | 1, 4 | bitrd 244 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 | 
| This theorem is referenced by: sbcom 2089 sbcom2 2114 r19.12sn 3790 lefinlteq 4464 eqtfinrelk 4487 tfinlefin 4503 opbrop 4842 fvopab3g 5387 unpreima 5409 inpreima 5410 respreima 5411 fconst5 5456 isotr 5496 ncseqnc 6129 | 
| Copyright terms: Public domain | W3C validator |