New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3bitr4d | Unicode version |
Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
3bitr4d.1 | |
3bitr4d.2 | |
3bitr4d.3 |
Ref | Expression |
---|---|
3bitr4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.2 | . 2 | |
2 | 3bitr4d.1 | . . 3 | |
3 | 3bitr4d.3 | . . 3 | |
4 | 2, 3 | bitr4d 247 | . 2 |
5 | 1, 4 | bitrd 244 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: sbcom 2089 sbcom2 2114 r19.12sn 3790 lefinlteq 4464 eqtfinrelk 4487 tfinlefin 4503 opbrop 4842 fvopab3g 5387 unpreima 5409 inpreima 5410 respreima 5411 fconst5 5456 isotr 5496 ncseqnc 6129 |
Copyright terms: Public domain | W3C validator |