NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  lefinlteq Unicode version

Theorem lefinlteq 4463
Description: Transfer from less than or equal to less than. (Contributed by SF, 29-Jan-2015.)
Assertion
Ref Expression
lefinlteq <_fin <fin

Proof of Theorem lefinlteq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnc0suc 4412 . . . . . . . 8 Nn 0c Nn 1c
2 addceq2 4384 . . . . . . . . . 10 0c 0c
3 addcid1 4405 . . . . . . . . . 10 0c
42, 3syl6req 2402 . . . . . . . . 9 0c
5 addceq2 4384 . . . . . . . . . . 11 1c 1c
6 addcass 4415 . . . . . . . . . . 11 1c 1c
75, 6syl6eqr 2403 . . . . . . . . . 10 1c 1c
87reximi 2721 . . . . . . . . 9 Nn 1c Nn 1c
94, 8orim12i 502 . . . . . . . 8 0c Nn 1c Nn 1c
101, 9sylbi 187 . . . . . . 7 Nn Nn 1c
1110orcomd 377 . . . . . 6 Nn Nn 1c
12 eqeq1 2359 . . . . . . . 8 1c 1c
1312rexbidv 2635 . . . . . . 7 Nn 1c Nn 1c
14 eqeq2 2362 . . . . . . 7
1513, 14orbi12d 690 . . . . . 6 Nn 1c Nn 1c
1611, 15syl5ibrcom 213 . . . . 5 Nn Nn 1c
1716rexlimiv 2732 . . . 4 Nn Nn 1c
186eqeq2i 2363 . . . . . . 7 1c 1c
19 peano2 4403 . . . . . . . 8 Nn 1c Nn
205eqeq2d 2364 . . . . . . . . 9 1c 1c
2120rspcev 2955 . . . . . . . 8 1c Nn 1c Nn
2219, 21sylan 457 . . . . . . 7 Nn 1c Nn
2318, 22sylan2b 461 . . . . . 6 Nn 1c Nn
2423rexlimiva 2733 . . . . 5 Nn 1c Nn
25 peano1 4402 . . . . . . 7 0c Nn
263eqcomi 2357 . . . . . . 7 0c
272eqeq2d 2364 . . . . . . . 8 0c 0c
2827rspcev 2955 . . . . . . 7 0c Nn 0c Nn
2925, 26, 28mp2an 653 . . . . . 6 Nn
30 eqeq1 2359 . . . . . . 7
3130rexbidv 2635 . . . . . 6 Nn Nn
3229, 31mpbii 202 . . . . 5 Nn
3324, 32jaoi 368 . . . 4 Nn 1c Nn
3417, 33impbii 180 . . 3 Nn Nn 1c
3534a1i 10 . 2 Nn Nn 1c
36 opklefing 4448 . . 3 <_fin Nn
37363adant3 975 . 2 <_fin Nn
38 opkltfing 4449 . . . . . 6 <fin Nn 1c
3938adantr 451 . . . . 5 <fin Nn 1c
40 ibar 490 . . . . . 6 Nn 1c Nn 1c
4140adantl 452 . . . . 5 Nn 1c Nn 1c
4239, 41bitr4d 247 . . . 4 <fin Nn 1c
4342orbi1d 683 . . 3 <fin Nn 1c
44433impa 1146 . 2 <fin Nn 1c
4535, 37, 443bitr4d 276 1 <_fin <fin
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wo 357   wa 358   w3a 934   wceq 1642   wcel 1710   wne 2516  wrex 2615  c0 3550  copk 4057  1cc1c 4134   Nn cnnc 4373  0cc0c 4374   cplc 4375   <_fin clefin 4432   <fin cltfin 4433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-0c 4377  df-addc 4378  df-nnc 4379  df-lefin 4440  df-ltfin 4441
This theorem is referenced by:  ltfintri  4466  vfin1cltv  4547
  Copyright terms: Public domain W3C validator