New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > axssetprim | Unicode version |
Description: ax-sset 4083 presented without any set theory definitions. (Contributed by SF, 25-Mar-2015.) |
Ref | Expression |
---|---|
axssetprim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-sset 4083 | . 2 | |
2 | df-clel 2349 | . . . . . 6 | |
3 | axprimlem2 4090 | . . . . . . . 8 | |
4 | 3 | anbi1i 676 | . . . . . . 7 |
5 | 4 | exbii 1582 | . . . . . 6 |
6 | 2, 5 | bitri 240 | . . . . 5 |
7 | 6 | bibi1i 305 | . . . 4 |
8 | 7 | 2albii 1567 | . . 3 |
9 | 8 | exbii 1582 | . 2 |
10 | 1, 9 | mpbi 199 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-sset 4083 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |