NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  axssetprim Unicode version

Theorem axssetprim 4093
Description: ax-sset 4083 presented without any set theory definitions. (Contributed by SF, 25-Mar-2015.)
Assertion
Ref Expression
axssetprim
Distinct variable groups:   ,   ,,,   ,   ,,,   ,   ,,   ,,,

Proof of Theorem axssetprim
StepHypRef Expression
1 ax-sset 4083 . 2
2 df-clel 2349 . . . . . 6
3 axprimlem2 4090 . . . . . . . 8
43anbi1i 676 . . . . . . 7
54exbii 1582 . . . . . 6
62, 5bitri 240 . . . . 5
76bibi1i 305 . . . 4
872albii 1567 . . 3
98exbii 1582 . 2
101, 9mpbi 199 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wo 357   wa 358  wal 1540  wex 1541   wceq 1642   wcel 1710  copk 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-sset 4083
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-opk 4059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator