| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > axprimlem2 | Unicode version | ||
| Description: Lemma for the primitive axioms. Primitive form of equality to a Kuratowski ordered pair. (Contributed by SF, 25-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| axprimlem2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-opk 4059 | 
. . 3
 | |
| 2 | 1 | eqeq2i 2363 | 
. 2
 | 
| 3 | dfcleq 2347 | 
. . 3
 | |
| 4 | vex 2863 | 
. . . . . . 7
 | |
| 5 | 4 | elpr 3752 | 
. . . . . 6
 | 
| 6 | axprimlem1 4089 | 
. . . . . . 7
 | |
| 7 | dfcleq 2347 | 
. . . . . . . 8
 | |
| 8 | vex 2863 | 
. . . . . . . . . . 11
 | |
| 9 | 8 | elpr 3752 | 
. . . . . . . . . 10
 | 
| 10 | 9 | bibi2i 304 | 
. . . . . . . . 9
 | 
| 11 | 10 | albii 1566 | 
. . . . . . . 8
 | 
| 12 | 7, 11 | bitri 240 | 
. . . . . . 7
 | 
| 13 | 6, 12 | orbi12i 507 | 
. . . . . 6
 | 
| 14 | 5, 13 | bitri 240 | 
. . . . 5
 | 
| 15 | 14 | bibi2i 304 | 
. . . 4
 | 
| 16 | 15 | albii 1566 | 
. . 3
 | 
| 17 | 3, 16 | bitri 240 | 
. 2
 | 
| 18 | 2, 17 | bitri 240 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 | 
| This theorem is referenced by: axxpprim 4091 axcnvprim 4092 axssetprim 4093 axsiprim 4094 axtyplowerprim 4095 axins2prim 4096 axins3prim 4097 | 
| Copyright terms: Public domain | W3C validator |