NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  axprimlem2 Unicode version

Theorem axprimlem2 4090
Description: Lemma for the primitive axioms. Primitive form of equality to a Kuratowski ordered pair. (Contributed by SF, 25-Mar-2015.)
Assertion
Ref Expression
axprimlem2
Distinct variable groups:   ,   ,,   ,   ,,   ,   ,
Allowed substitution hints:   ()   (,)

Proof of Theorem axprimlem2
StepHypRef Expression
1 df-opk 4059 . . 3
21eqeq2i 2363 . 2
3 dfcleq 2347 . . 3
4 vex 2863 . . . . . . 7
54elpr 3752 . . . . . 6
6 axprimlem1 4089 . . . . . . 7
7 dfcleq 2347 . . . . . . . 8
8 vex 2863 . . . . . . . . . . 11
98elpr 3752 . . . . . . . . . 10
109bibi2i 304 . . . . . . . . 9
1110albii 1566 . . . . . . . 8
127, 11bitri 240 . . . . . . 7
136, 12orbi12i 507 . . . . . 6
145, 13bitri 240 . . . . 5
1514bibi2i 304 . . . 4
1615albii 1566 . . 3
173, 16bitri 240 . 2
182, 17bitri 240 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wo 357  wal 1540   wceq 1642   wcel 1710  csn 3738  cpr 3739  copk 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-opk 4059
This theorem is referenced by:  axxpprim  4091  axcnvprim  4092  axssetprim  4093  axsiprim  4094  axtyplowerprim  4095  axins2prim  4096  axins3prim  4097
  Copyright terms: Public domain W3C validator