| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > axsiprim | Unicode version | ||
| Description: ax-si 4084 presented without any set theory definitions. (Contributed by SF, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| axsiprim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-si 4084 |
. 2
| |
| 2 | df-clel 2349 |
. . . . . 6
| |
| 3 | axprimlem2 4090 |
. . . . . . . . 9
| |
| 4 | axprimlem1 4089 |
. . . . . . . . . . . . . 14
| |
| 5 | 4 | bibi2i 304 |
. . . . . . . . . . . . 13
|
| 6 | 5 | albii 1566 |
. . . . . . . . . . . 12
|
| 7 | axprimlem1 4089 |
. . . . . . . . . . . . . . 15
| |
| 8 | axprimlem1 4089 |
. . . . . . . . . . . . . . 15
| |
| 9 | 7, 8 | orbi12i 507 |
. . . . . . . . . . . . . 14
|
| 10 | 9 | bibi2i 304 |
. . . . . . . . . . . . 13
|
| 11 | 10 | albii 1566 |
. . . . . . . . . . . 12
|
| 12 | 6, 11 | orbi12i 507 |
. . . . . . . . . . 11
|
| 13 | 12 | bibi2i 304 |
. . . . . . . . . 10
|
| 14 | 13 | albii 1566 |
. . . . . . . . 9
|
| 15 | 3, 14 | bitri 240 |
. . . . . . . 8
|
| 16 | 15 | anbi1i 676 |
. . . . . . 7
|
| 17 | 16 | exbii 1582 |
. . . . . 6
|
| 18 | 2, 17 | bitri 240 |
. . . . 5
|
| 19 | df-clel 2349 |
. . . . . 6
| |
| 20 | axprimlem2 4090 |
. . . . . . . 8
| |
| 21 | 20 | anbi1i 676 |
. . . . . . 7
|
| 22 | 21 | exbii 1582 |
. . . . . 6
|
| 23 | 19, 22 | bitri 240 |
. . . . 5
|
| 24 | 18, 23 | bibi12i 306 |
. . . 4
|
| 25 | 24 | 2albii 1567 |
. . 3
|
| 26 | 25 | exbii 1582 |
. 2
|
| 27 | 1, 26 | mpbi 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-si 4084 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |