New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > axsiprim | Unicode version |
Description: ax-si 4084 presented without any set theory definitions. (Contributed by SF, 25-Mar-2015.) |
Ref | Expression |
---|---|
axsiprim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-si 4084 | . 2 | |
2 | df-clel 2349 | . . . . . 6 | |
3 | axprimlem2 4090 | . . . . . . . . 9 | |
4 | axprimlem1 4089 | . . . . . . . . . . . . . 14 | |
5 | 4 | bibi2i 304 | . . . . . . . . . . . . 13 |
6 | 5 | albii 1566 | . . . . . . . . . . . 12 |
7 | axprimlem1 4089 | . . . . . . . . . . . . . . 15 | |
8 | axprimlem1 4089 | . . . . . . . . . . . . . . 15 | |
9 | 7, 8 | orbi12i 507 | . . . . . . . . . . . . . 14 |
10 | 9 | bibi2i 304 | . . . . . . . . . . . . 13 |
11 | 10 | albii 1566 | . . . . . . . . . . . 12 |
12 | 6, 11 | orbi12i 507 | . . . . . . . . . . 11 |
13 | 12 | bibi2i 304 | . . . . . . . . . 10 |
14 | 13 | albii 1566 | . . . . . . . . 9 |
15 | 3, 14 | bitri 240 | . . . . . . . 8 |
16 | 15 | anbi1i 676 | . . . . . . 7 |
17 | 16 | exbii 1582 | . . . . . 6 |
18 | 2, 17 | bitri 240 | . . . . 5 |
19 | df-clel 2349 | . . . . . 6 | |
20 | axprimlem2 4090 | . . . . . . . 8 | |
21 | 20 | anbi1i 676 | . . . . . . 7 |
22 | 21 | exbii 1582 | . . . . . 6 |
23 | 19, 22 | bitri 240 | . . . . 5 |
24 | 18, 23 | bibi12i 306 | . . . 4 |
25 | 24 | 2albii 1567 | . . 3 |
26 | 25 | exbii 1582 | . 2 |
27 | 1, 26 | mpbi 199 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wo 357 wa 358 wal 1540 wex 1541 wceq 1642 wcel 1710 csn 3738 copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-si 4084 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |