| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > cbvreucsf | Unicode version | ||
| Description: A more general version of cbvreuv 2838 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| cbvralcsf.1 | 
 | 
| cbvralcsf.2 | 
 | 
| cbvralcsf.3 | 
 | 
| cbvralcsf.4 | 
 | 
| cbvralcsf.5 | 
 | 
| cbvralcsf.6 | 
 | 
| Ref | Expression | 
|---|---|
| cbvreucsf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1619 | 
. . . 4
 | |
| 2 | nfcsb1v 3169 | 
. . . . . 6
 | |
| 3 | 2 | nfcri 2484 | 
. . . . 5
 | 
| 4 | nfs1v 2106 | 
. . . . 5
 | |
| 5 | 3, 4 | nfan 1824 | 
. . . 4
 | 
| 6 | id 19 | 
. . . . . 6
 | |
| 7 | csbeq1a 3145 | 
. . . . . 6
 | |
| 8 | 6, 7 | eleq12d 2421 | 
. . . . 5
 | 
| 9 | sbequ12 1919 | 
. . . . 5
 | |
| 10 | 8, 9 | anbi12d 691 | 
. . . 4
 | 
| 11 | 1, 5, 10 | cbveu 2224 | 
. . 3
 | 
| 12 | nfcv 2490 | 
. . . . . . 7
 | |
| 13 | cbvralcsf.1 | 
. . . . . . 7
 | |
| 14 | 12, 13 | nfcsb 3171 | 
. . . . . 6
 | 
| 15 | 14 | nfcri 2484 | 
. . . . 5
 | 
| 16 | cbvralcsf.3 | 
. . . . . 6
 | |
| 17 | 16 | nfsb 2109 | 
. . . . 5
 | 
| 18 | 15, 17 | nfan 1824 | 
. . . 4
 | 
| 19 | nfv 1619 | 
. . . 4
 | |
| 20 | id 19 | 
. . . . . 6
 | |
| 21 | csbeq1 3140 | 
. . . . . . 7
 | |
| 22 | sbsbc 3051 | 
. . . . . . . . 9
 | |
| 23 | 22 | abbii 2466 | 
. . . . . . . 8
 | 
| 24 | cbvralcsf.2 | 
. . . . . . . . . . . 12
 | |
| 25 | 24 | nfcri 2484 | 
. . . . . . . . . . 11
 | 
| 26 | cbvralcsf.5 | 
. . . . . . . . . . . 12
 | |
| 27 | 26 | eleq2d 2420 | 
. . . . . . . . . . 11
 | 
| 28 | 25, 27 | sbie 2038 | 
. . . . . . . . . 10
 | 
| 29 | 28 | bicomi 193 | 
. . . . . . . . 9
 | 
| 30 | 29 | eqabi 2465 | 
. . . . . . . 8
 | 
| 31 | df-csb 3138 | 
. . . . . . . 8
 | |
| 32 | 23, 30, 31 | 3eqtr4ri 2384 | 
. . . . . . 7
 | 
| 33 | 21, 32 | syl6eq 2401 | 
. . . . . 6
 | 
| 34 | 20, 33 | eleq12d 2421 | 
. . . . 5
 | 
| 35 | sbequ 2060 | 
. . . . . 6
 | |
| 36 | cbvralcsf.4 | 
. . . . . . 7
 | |
| 37 | cbvralcsf.6 | 
. . . . . . 7
 | |
| 38 | 36, 37 | sbie 2038 | 
. . . . . 6
 | 
| 39 | 35, 38 | syl6bb 252 | 
. . . . 5
 | 
| 40 | 34, 39 | anbi12d 691 | 
. . . 4
 | 
| 41 | 18, 19, 40 | cbveu 2224 | 
. . 3
 | 
| 42 | 11, 41 | bitri 240 | 
. 2
 | 
| 43 | df-reu 2622 | 
. 2
 | |
| 44 | df-reu 2622 | 
. 2
 | |
| 45 | 42, 43, 44 | 3bitr4i 268 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-reu 2622 df-sbc 3048 df-csb 3138 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |