| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ceqsex | GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| ceqsex.1 | ⊢ Ⅎxψ |
| ceqsex.2 | ⊢ A ∈ V |
| ceqsex.3 | ⊢ (x = A → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| ceqsex | ⊢ (∃x(x = A ∧ φ) ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex.1 | . . 3 ⊢ Ⅎxψ | |
| 2 | ceqsex.3 | . . . 4 ⊢ (x = A → (φ ↔ ψ)) | |
| 3 | 2 | biimpa 470 | . . 3 ⊢ ((x = A ∧ φ) → ψ) |
| 4 | 1, 3 | exlimi 1803 | . 2 ⊢ (∃x(x = A ∧ φ) → ψ) |
| 5 | 2 | biimprcd 216 | . . . 4 ⊢ (ψ → (x = A → φ)) |
| 6 | 1, 5 | alrimi 1765 | . . 3 ⊢ (ψ → ∀x(x = A → φ)) |
| 7 | ceqsex.2 | . . . 4 ⊢ A ∈ V | |
| 8 | 7 | isseti 2866 | . . 3 ⊢ ∃x x = A |
| 9 | exintr 1614 | . . 3 ⊢ (∀x(x = A → φ) → (∃x x = A → ∃x(x = A ∧ φ))) | |
| 10 | 6, 8, 9 | ee10 1376 | . 2 ⊢ (ψ → ∃x(x = A ∧ φ)) |
| 11 | 4, 10 | impbii 180 | 1 ⊢ (∃x(x = A ∧ φ) ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
| This theorem is referenced by: ceqsexv 2895 ceqsex2 2896 |
| Copyright terms: Public domain | W3C validator |