New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceqsrexv | Unicode version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ceqsrexv.1 |
Ref | Expression |
---|---|
ceqsrexv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2621 | . . 3 | |
2 | an12 772 | . . . 4 | |
3 | 2 | exbii 1582 | . . 3 |
4 | 1, 3 | bitr4i 243 | . 2 |
5 | eleq1 2413 | . . . . 5 | |
6 | ceqsrexv.1 | . . . . 5 | |
7 | 5, 6 | anbi12d 691 | . . . 4 |
8 | 7 | ceqsexgv 2972 | . . 3 |
9 | 8 | bianabs 850 | . 2 |
10 | 4, 9 | syl5bb 248 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
This theorem is referenced by: ceqsrexbv 2974 ceqsrex2v 2975 fnasrn 5418 f1oiso 5500 |
Copyright terms: Public domain | W3C validator |