New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ceqsrex2v | Unicode version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.) |
Ref | Expression |
---|---|
ceqsrex2v.1 | |
ceqsrex2v.2 |
Ref | Expression |
---|---|
ceqsrex2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 630 | . . . . . 6 | |
2 | 1 | rexbii 2640 | . . . . 5 |
3 | r19.42v 2766 | . . . . 5 | |
4 | 2, 3 | bitri 240 | . . . 4 |
5 | 4 | rexbii 2640 | . . 3 |
6 | ceqsrex2v.1 | . . . . . 6 | |
7 | 6 | anbi2d 684 | . . . . 5 |
8 | 7 | rexbidv 2636 | . . . 4 |
9 | 8 | ceqsrexv 2973 | . . 3 |
10 | 5, 9 | syl5bb 248 | . 2 |
11 | ceqsrex2v.2 | . . 3 | |
12 | 11 | ceqsrexv 2973 | . 2 |
13 | 10, 12 | sylan9bb 680 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |