New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fnasrn | Unicode version |
Description: A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
fnasrn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5182 | . . . . . 6 | |
2 | opeldm 4910 | . . . . . . 7 | |
3 | eleq2 2414 | . . . . . . 7 | |
4 | 2, 3 | syl5ib 210 | . . . . . 6 |
5 | 1, 4 | syl 15 | . . . . 5 |
6 | eleq1 2413 | . . . . . . . . 9 | |
7 | 6 | biimpcd 215 | . . . . . . . 8 |
8 | 7 | adantrd 454 | . . . . . . 7 |
9 | 8 | rexlimiv 2732 | . . . . . 6 |
10 | 9 | a1i 10 | . . . . 5 |
11 | fveq2 5328 | . . . . . . . . . 10 | |
12 | 11 | eqeq1d 2361 | . . . . . . . . 9 |
13 | 12 | ceqsrexv 2972 | . . . . . . . 8 |
14 | 13 | adantl 452 | . . . . . . 7 |
15 | fnopfvb 5359 | . . . . . . 7 | |
16 | 14, 15 | bitr2d 245 | . . . . . 6 |
17 | 16 | ex 423 | . . . . 5 |
18 | 5, 10, 17 | pm5.21ndd 343 | . . . 4 |
19 | vex 2862 | . . . . . 6 | |
20 | vex 2862 | . . . . . 6 | |
21 | 19, 20 | opex 4588 | . . . . 5 |
22 | eqeq1 2359 | . . . . . . 7 | |
23 | eqcom 2355 | . . . . . . . 8 | |
24 | opth 4602 | . . . . . . . 8 | |
25 | 23, 24 | bitri 240 | . . . . . . 7 |
26 | 22, 25 | syl6bb 252 | . . . . . 6 |
27 | 26 | rexbidv 2635 | . . . . 5 |
28 | 21, 27 | elab 2985 | . . . 4 |
29 | 18, 28 | syl6bbr 254 | . . 3 |
30 | 29 | eqrelrdv 4852 | . 2 |
31 | rnopab2 4968 | . 2 | |
32 | 30, 31 | syl6eqr 2403 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 cab 2339 wrex 2615 cop 4561 copab 4622 cdm 4772 crn 4773 wfn 4776 cfv 4781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-fv 4795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |