New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pprodeq2 | Unicode version |
Description: Equality theorem for parallel product. (Contributed by Scott Fenton, 31-Jul-2019.) |
Ref | Expression |
---|---|
pprodeq2 | PProd PProd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1 4875 | . . 3 | |
2 | txpeq2 5781 | . . 3 | |
3 | 1, 2 | syl 15 | . 2 |
4 | df-pprod 5739 | . 2 PProd | |
5 | df-pprod 5739 | . 2 PProd | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 PProd PProd |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 c1st 4718 ccom 4722 c2nd 4784 ctxp 5736 PProd cpprod 5738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 df-br 4641 df-co 4727 df-txp 5737 df-pprod 5739 |
This theorem is referenced by: freceq12 6312 |
Copyright terms: Public domain | W3C validator |