New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enpw1pw | Unicode version |
Description: Unit power class and power class commute within equivalence. Theorem XI.1.35 of [Rosser] p. 368. (Contributed by SF, 26-Feb-2015.) |
Ref | Expression |
---|---|
enpw1pw.1 |
Ref | Expression |
---|---|
enpw1pw | 1 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1fnf1o 5855 | . . . . 5 Pw1Fn 1c1c | |
2 | f1of1 5286 | . . . . 5 Pw1Fn 1c1c Pw1Fn 1c1c | |
3 | 1, 2 | ax-mp 5 | . . . 4 Pw1Fn 1c1c |
4 | pw1ss1c 4158 | . . . 4 1 1c | |
5 | f1ores 5300 | . . . 4 Pw1Fn 1c1c 1 1c Pw1Fn 1 1 Pw1Fn 1 | |
6 | 3, 4, 5 | mp2an 653 | . . 3 Pw1Fn 1 1 Pw1Fn 1 |
7 | df-ima 4727 | . . . . 5 Pw1Fn 1 1 Pw1Fn | |
8 | vex 2862 | . . . . . . . . 9 | |
9 | 8 | elpw 3728 | . . . . . . . 8 1 1 |
10 | 8 | sspw1 4335 | . . . . . . . 8 1 1 |
11 | df-rex 2620 | . . . . . . . . 9 1 1 | |
12 | df-pw 3724 | . . . . . . . . . . . 12 | |
13 | 12 | abeq2i 2460 | . . . . . . . . . . 11 |
14 | 13 | anbi1i 676 | . . . . . . . . . 10 1 1 |
15 | 14 | exbii 1582 | . . . . . . . . 9 1 1 |
16 | 11, 15 | bitr2i 241 | . . . . . . . 8 1 1 |
17 | 9, 10, 16 | 3bitri 262 | . . . . . . 7 1 1 |
18 | df-rex 2620 | . . . . . . . 8 1 Pw1Fn 1 Pw1Fn | |
19 | elpw1 4144 | . . . . . . . . . . 11 1 | |
20 | 19 | anbi1i 676 | . . . . . . . . . 10 1 Pw1Fn Pw1Fn |
21 | r19.41v 2764 | . . . . . . . . . 10 Pw1Fn Pw1Fn | |
22 | 20, 21 | bitr4i 243 | . . . . . . . . 9 1 Pw1Fn Pw1Fn |
23 | 22 | exbii 1582 | . . . . . . . 8 1 Pw1Fn Pw1Fn |
24 | rexcom4 2878 | . . . . . . . . 9 Pw1Fn Pw1Fn | |
25 | snex 4111 | . . . . . . . . . . . 12 | |
26 | breq1 4642 | . . . . . . . . . . . 12 Pw1Fn Pw1Fn | |
27 | 25, 26 | ceqsexv 2894 | . . . . . . . . . . 11 Pw1Fn Pw1Fn |
28 | vex 2862 | . . . . . . . . . . . 12 | |
29 | 28 | brpw1fn 5854 | . . . . . . . . . . 11 Pw1Fn 1 |
30 | 27, 29 | bitri 240 | . . . . . . . . . 10 Pw1Fn 1 |
31 | 30 | rexbii 2639 | . . . . . . . . 9 Pw1Fn 1 |
32 | 24, 31 | bitr3i 242 | . . . . . . . 8 Pw1Fn 1 |
33 | 18, 23, 32 | 3bitri 262 | . . . . . . 7 1 Pw1Fn 1 |
34 | 17, 33 | bitr4i 243 | . . . . . 6 1 1 Pw1Fn |
35 | 34 | abbi2i 2464 | . . . . 5 1 1 Pw1Fn |
36 | 7, 35 | eqtr4i 2376 | . . . 4 Pw1Fn 1 1 |
37 | f1oeq3 5283 | . . . 4 Pw1Fn 1 1 Pw1Fn 1 1 Pw1Fn 1 Pw1Fn 1 1 1 | |
38 | 36, 37 | ax-mp 5 | . . 3 Pw1Fn 1 1 Pw1Fn 1 Pw1Fn 1 1 1 |
39 | 6, 38 | mpbi 199 | . 2 Pw1Fn 1 1 1 |
40 | pw1fnex 5852 | . . . 4 Pw1Fn | |
41 | enpw1pw.1 | . . . . . 6 | |
42 | 41 | pwex 4329 | . . . . 5 |
43 | 42 | pw1ex 4303 | . . . 4 1 |
44 | 40, 43 | resex 5117 | . . 3 Pw1Fn 1 |
45 | 44 | f1oen 6033 | . 2 Pw1Fn 1 1 1 1 1 |
46 | 39, 45 | ax-mp 5 | 1 1 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 cab 2339 wrex 2615 cvv 2859 wss 3257 cpw 3722 csn 3737 1cc1c 4134 1 cpw1 4135 class class class wbr 4639 cima 4722 cres 4774 wf1 4778 wf1o 4780 Pw1Fn cpw1fn 5765 cen 6028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-fv 4795 df-2nd 4797 df-mpt 5652 df-txp 5736 df-ins2 5750 df-ins3 5752 df-pw1fn 5766 df-en 6029 |
This theorem is referenced by: ncpwpw1 6153 |
Copyright terms: Public domain | W3C validator |