New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > enadj | Unicode version |
Description: Equivalence law for adjunction. Theorem XI.1.13 of [Rosser] p. 348. (Contributed by SF, 25-Feb-2015.) |
Ref | Expression |
---|---|
enadj.1 | |
enadj.2 | |
enadj.3 | |
enadj.4 |
Ref | Expression |
---|---|
enadj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3745 | . . . . . 6 | |
2 | 1 | uneq2d 3419 | . . . . 5 |
3 | 2 | eqeq1d 2361 | . . . 4 |
4 | eleq1 2413 | . . . . 5 | |
5 | 4 | notbid 285 | . . . 4 |
6 | 3, 5 | 3anbi12d 1253 | . . 3 |
7 | simp1 955 | . . . . . 6 | |
8 | 7 | difeq1d 3385 | . . . . 5 |
9 | nnsucelrlem2 4426 | . . . . . 6 | |
10 | 9 | 3ad2ant2 977 | . . . . 5 |
11 | nnsucelrlem2 4426 | . . . . . 6 | |
12 | 11 | 3ad2ant3 978 | . . . . 5 |
13 | 8, 10, 12 | 3eqtr3d 2393 | . . . 4 |
14 | enadj.2 | . . . . 5 | |
15 | 14 | enrflx 6036 | . . . 4 |
16 | 13, 15 | syl6eqbr 4677 | . . 3 |
17 | 6, 16 | syl6bi 219 | . 2 |
18 | elsni 3758 | . . . . . . . . 9 | |
19 | 18 | eqcomd 2358 | . . . . . . . 8 |
20 | 19 | necon3ai 2557 | . . . . . . 7 |
21 | 20 | adantr 451 | . . . . . 6 |
22 | ssun2 3428 | . . . . . . . . 9 | |
23 | enadj.4 | . . . . . . . . . 10 | |
24 | 23 | snid 3761 | . . . . . . . . 9 |
25 | 22, 24 | sselii 3271 | . . . . . . . 8 |
26 | simpr1 961 | . . . . . . . 8 | |
27 | 25, 26 | syl5eleqr 2440 | . . . . . . 7 |
28 | elun 3221 | . . . . . . 7 | |
29 | 27, 28 | sylib 188 | . . . . . 6 |
30 | orel2 372 | . . . . . 6 | |
31 | 21, 29, 30 | sylc 56 | . . . . 5 |
32 | elsni 3758 | . . . . . . . 8 | |
33 | 32 | necon3ai 2557 | . . . . . . 7 |
34 | 33 | adantr 451 | . . . . . 6 |
35 | ssun2 3428 | . . . . . . . . 9 | |
36 | enadj.3 | . . . . . . . . . 10 | |
37 | 36 | snid 3761 | . . . . . . . . 9 |
38 | 35, 37 | sselii 3271 | . . . . . . . 8 |
39 | 38, 26 | syl5eleq 2439 | . . . . . . 7 |
40 | elun 3221 | . . . . . . 7 | |
41 | 39, 40 | sylib 188 | . . . . . 6 |
42 | orel2 372 | . . . . . 6 | |
43 | 34, 41, 42 | sylc 56 | . . . . 5 |
44 | 31, 43 | jca 518 | . . . 4 |
45 | simpl1 958 | . . . . . . 7 | |
46 | simpl2 959 | . . . . . . 7 | |
47 | simpl3 960 | . . . . . . 7 | |
48 | simprl 732 | . . . . . . 7 | |
49 | simprr 733 | . . . . . . 7 | |
50 | enadjlem1 6060 | . . . . . . 7 | |
51 | 45, 46, 47, 48, 49, 50 | syl122anc 1191 | . . . . . 6 |
52 | 51 | 3adant1 973 | . . . . 5 |
53 | enadj.1 | . . . . . . . . . . 11 | |
54 | snex 4112 | . . . . . . . . . . 11 | |
55 | 53, 54 | difex 4108 | . . . . . . . . . 10 |
56 | 55 | enrflx 6036 | . . . . . . . . 9 |
57 | breq2 4644 | . . . . . . . . 9 | |
58 | 56, 57 | mpbii 202 | . . . . . . . 8 |
59 | 58 | adantl 452 | . . . . . . 7 |
60 | 23, 36 | ensn 6059 | . . . . . . . 8 |
61 | 60 | a1i 10 | . . . . . . 7 |
62 | incom 3449 | . . . . . . . . 9 | |
63 | disjdif 3623 | . . . . . . . . 9 | |
64 | 62, 63 | eqtri 2373 | . . . . . . . 8 |
65 | 64 | a1i 10 | . . . . . . 7 |
66 | incom 3449 | . . . . . . . . 9 | |
67 | disjdif 3623 | . . . . . . . . 9 | |
68 | 66, 67 | eqtri 2373 | . . . . . . . 8 |
69 | 68 | a1i 10 | . . . . . . 7 |
70 | unen 6049 | . . . . . . 7 | |
71 | 59, 61, 65, 69, 70 | syl22anc 1183 | . . . . . 6 |
72 | simpl3l 1010 | . . . . . . 7 | |
73 | nnsucelrlem4 4428 | . . . . . . 7 | |
74 | 72, 73 | syl 15 | . . . . . 6 |
75 | simpl3r 1011 | . . . . . . 7 | |
76 | nnsucelrlem4 4428 | . . . . . . 7 | |
77 | 75, 76 | syl 15 | . . . . . 6 |
78 | 71, 74, 77 | 3brtr3d 4669 | . . . . 5 |
79 | 52, 78 | mpdan 649 | . . . 4 |
80 | 44, 79 | mpd3an3 1278 | . . 3 |
81 | 80 | ex 423 | . 2 |
82 | 17, 81 | pm2.61ine 2593 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wo 357 wa 358 w3a 934 wceq 1642 wcel 1710 wne 2517 cvv 2860 cdif 3207 cun 3208 cin 3209 c0 3551 csn 3738 class class class wbr 4640 cen 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-en 6030 |
This theorem is referenced by: peano4nc 6151 |
Copyright terms: Public domain | W3C validator |