New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dflec2 | Unicode version |
Description: Cardinal less than or equal in terms of cardinal addition. Theorem XI.2.22 of [Rosser] p. 377. (Contributed by SF, 11-Mar-2015.) |
Ref | Expression |
---|---|
dflec2 | NC NC c NC |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlecg 6113 | . . 3 NC NC c | |
2 | ncseqnc 6129 | . . . . . . 7 NC Nc | |
3 | ncseqnc 6129 | . . . . . . 7 NC Nc | |
4 | 2, 3 | bi2anan9 843 | . . . . . 6 NC NC Nc Nc |
5 | 4 | biimpar 471 | . . . . 5 NC NC Nc Nc |
6 | vex 2863 | . . . . . . . . 9 | |
7 | vex 2863 | . . . . . . . . 9 | |
8 | 6, 7 | difex 4108 | . . . . . . . 8 |
9 | 8 | ncelncsi 6122 | . . . . . . 7 Nc NC |
10 | disjdif 3623 | . . . . . . . . 9 | |
11 | 7, 8 | ncdisjun 6137 | . . . . . . . . 9 Nc Nc Nc |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 Nc Nc Nc |
13 | undif2 3627 | . . . . . . . . . 10 | |
14 | ssequn1 3434 | . . . . . . . . . . 11 | |
15 | 14 | biimpi 186 | . . . . . . . . . 10 |
16 | 13, 15 | syl5eq 2397 | . . . . . . . . 9 |
17 | 16 | nceqd 6111 | . . . . . . . 8 Nc Nc |
18 | 12, 17 | syl5reqr 2400 | . . . . . . 7 Nc Nc Nc |
19 | addceq2 4385 | . . . . . . . . 9 Nc Nc Nc Nc | |
20 | 19 | eqeq2d 2364 | . . . . . . . 8 Nc Nc Nc Nc Nc Nc |
21 | 20 | rspcev 2956 | . . . . . . 7 Nc NC Nc Nc Nc NC Nc Nc |
22 | 9, 18, 21 | sylancr 644 | . . . . . 6 NC Nc Nc |
23 | id 19 | . . . . . . . . 9 Nc Nc | |
24 | addceq1 4384 | . . . . . . . . 9 Nc Nc | |
25 | 23, 24 | eqeqan12d 2368 | . . . . . . . 8 Nc Nc Nc Nc |
26 | 25 | rexbidv 2636 | . . . . . . 7 Nc Nc NC NC Nc Nc |
27 | 26 | ancoms 439 | . . . . . 6 Nc Nc NC NC Nc Nc |
28 | 22, 27 | syl5ibr 212 | . . . . 5 Nc Nc NC |
29 | 5, 28 | syl 15 | . . . 4 NC NC NC |
30 | 29 | rexlimdvva 2746 | . . 3 NC NC NC |
31 | 1, 30 | sylbid 206 | . 2 NC NC c NC |
32 | addlecncs 6210 | . . . . 5 NC NC c | |
33 | breq2 4644 | . . . . 5 c c | |
34 | 32, 33 | syl5ibrcom 213 | . . . 4 NC NC c |
35 | 34 | adantlr 695 | . . 3 NC NC NC c |
36 | 35 | rexlimdva 2739 | . 2 NC NC NC c |
37 | 31, 36 | impbid 183 | 1 NC NC c NC |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wceq 1642 wcel 1710 wrex 2616 cdif 3207 cun 3208 cin 3209 wss 3258 c0 3551 cplc 4376 class class class wbr 4640 NC cncs 6089 c clec 6090 Nc cnc 6092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-en 6030 df-ncs 6099 df-lec 6100 df-nc 6102 |
This theorem is referenced by: lectr 6212 leaddc1 6215 nc0suc 6218 leconnnc 6219 tlecg 6231 letc 6232 nclenn 6250 lemuc1 6254 lecadd2 6267 ncslesuc 6268 nchoicelem14 6303 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |