New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > phialllem2 | Unicode version |
Description: Lemma for phiall 4619. Any set without 0c is equal to the Phi of a set. (Contributed by Scott Fenton, 8-Apr-2021.) |
Ref | Expression |
---|---|
phiall.1 |
Ref | Expression |
---|---|
phialllem2 | 0c Phi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss2 3477 | . . 3 Nn Nn | |
2 | inss1 3476 | . . . . 5 Nn | |
3 | 2 | sseli 3270 | . . . 4 0c Nn 0c |
4 | 3 | con3i 127 | . . 3 0c 0c Nn |
5 | phiall.1 | . . . . 5 | |
6 | nncex 4397 | . . . . 5 Nn | |
7 | 5, 6 | inex 4106 | . . . 4 Nn |
8 | 7 | phialllem1 4617 | . . 3 Nn Nn 0c Nn Nn Phi |
9 | 1, 4, 8 | sylancr 644 | . 2 0c Nn Phi |
10 | uncom 3409 | . . . . . . 7 Nn Nn Nn Nn | |
11 | inundif 3629 | . . . . . . 7 Nn Nn | |
12 | 10, 11 | eqtri 2373 | . . . . . 6 Nn Nn |
13 | uneq2 3413 | . . . . . 6 Nn Phi Nn Nn Nn Phi | |
14 | 12, 13 | syl5eqr 2399 | . . . . 5 Nn Phi Nn Phi |
15 | phiun 4615 | . . . . . 6 Phi Nn Phi Nn Phi | |
16 | incom 3449 | . . . . . . . . 9 Nn Nn Nn Nn | |
17 | disjdif 3623 | . . . . . . . . 9 Nn Nn | |
18 | 16, 17 | eqtri 2373 | . . . . . . . 8 Nn Nn |
19 | phidisjnn 4616 | . . . . . . . 8 Nn Nn Phi Nn Nn | |
20 | 18, 19 | ax-mp 5 | . . . . . . 7 Phi Nn Nn |
21 | 20 | uneq1i 3415 | . . . . . 6 Phi Nn Phi Nn Phi |
22 | 15, 21 | eqtri 2373 | . . . . 5 Phi Nn Nn Phi |
23 | 14, 22 | syl6eqr 2403 | . . . 4 Nn Phi Phi Nn |
24 | 5, 6 | difex 4108 | . . . . . 6 Nn |
25 | vex 2863 | . . . . . 6 | |
26 | 24, 25 | unex 4107 | . . . . 5 Nn |
27 | phieq 4571 | . . . . . 6 Nn Phi Phi Nn | |
28 | 27 | eqeq2d 2364 | . . . . 5 Nn Phi Phi Nn |
29 | 26, 28 | spcev 2947 | . . . 4 Phi Nn Phi |
30 | 23, 29 | syl 15 | . . 3 Nn Phi Phi |
31 | 30 | exlimiv 1634 | . 2 Nn Phi Phi |
32 | 9, 31 | syl 15 | 1 0c Phi |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wex 1541 wceq 1642 wcel 1710 cvv 2860 cdif 3207 cun 3208 cin 3209 wss 3258 c0 3551 Nn cnnc 4374 0cc0c 4375 Phi cphi 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-0c 4378 df-addc 4379 df-nnc 4380 df-phi 4566 |
This theorem is referenced by: phiall 4619 |
Copyright terms: Public domain | W3C validator |