| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > phialllem2 | Unicode version | ||
| Description: Lemma for phiall 4619. Any set without 0c is equal to the Phi of a set. (Contributed by Scott Fenton, 8-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| phiall.1 | 
 | 
| Ref | Expression | 
|---|---|
| phialllem2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inss2 3477 | 
. . 3
 | |
| 2 | inss1 3476 | 
. . . . 5
 | |
| 3 | 2 | sseli 3270 | 
. . . 4
 | 
| 4 | 3 | con3i 127 | 
. . 3
 | 
| 5 | phiall.1 | 
. . . . 5
 | |
| 6 | nncex 4397 | 
. . . . 5
 | |
| 7 | 5, 6 | inex 4106 | 
. . . 4
 | 
| 8 | 7 | phialllem1 4617 | 
. . 3
 | 
| 9 | 1, 4, 8 | sylancr 644 | 
. 2
 | 
| 10 | uncom 3409 | 
. . . . . . 7
 | |
| 11 | inundif 3629 | 
. . . . . . 7
 | |
| 12 | 10, 11 | eqtri 2373 | 
. . . . . 6
 | 
| 13 | uneq2 3413 | 
. . . . . 6
 | |
| 14 | 12, 13 | syl5eqr 2399 | 
. . . . 5
 | 
| 15 | phiun 4615 | 
. . . . . 6
 | |
| 16 | incom 3449 | 
. . . . . . . . 9
 | |
| 17 | disjdif 3623 | 
. . . . . . . . 9
 | |
| 18 | 16, 17 | eqtri 2373 | 
. . . . . . . 8
 | 
| 19 | phidisjnn 4616 | 
. . . . . . . 8
 | |
| 20 | 18, 19 | ax-mp 5 | 
. . . . . . 7
 | 
| 21 | 20 | uneq1i 3415 | 
. . . . . 6
 | 
| 22 | 15, 21 | eqtri 2373 | 
. . . . 5
 | 
| 23 | 14, 22 | syl6eqr 2403 | 
. . . 4
 | 
| 24 | 5, 6 | difex 4108 | 
. . . . . 6
 | 
| 25 | vex 2863 | 
. . . . . 6
 | |
| 26 | 24, 25 | unex 4107 | 
. . . . 5
 | 
| 27 | phieq 4571 | 
. . . . . 6
 | |
| 28 | 27 | eqeq2d 2364 | 
. . . . 5
 | 
| 29 | 26, 28 | spcev 2947 | 
. . . 4
 | 
| 30 | 23, 29 | syl 15 | 
. . 3
 | 
| 31 | 30 | exlimiv 1634 | 
. 2
 | 
| 32 | 9, 31 | syl 15 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-0c 4378 df-addc 4379 df-nnc 4380 df-phi 4566 | 
| This theorem is referenced by: phiall 4619 | 
| Copyright terms: Public domain | W3C validator |