| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > elabgf | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| elabgf.1 | ⊢ ℲxA |
| elabgf.2 | ⊢ Ⅎxψ |
| elabgf.3 | ⊢ (x = A → (φ ↔ ψ)) |
| Ref | Expression |
|---|---|
| elabgf | ⊢ (A ∈ B → (A ∈ {x ∣ φ} ↔ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabgf.1 | . 2 ⊢ ℲxA | |
| 2 | nfab1 2492 | . . . 4 ⊢ Ⅎx{x ∣ φ} | |
| 3 | 1, 2 | nfel 2498 | . . 3 ⊢ Ⅎx A ∈ {x ∣ φ} |
| 4 | elabgf.2 | . . 3 ⊢ Ⅎxψ | |
| 5 | 3, 4 | nfbi 1834 | . 2 ⊢ Ⅎx(A ∈ {x ∣ φ} ↔ ψ) |
| 6 | eleq1 2413 | . . 3 ⊢ (x = A → (x ∈ {x ∣ φ} ↔ A ∈ {x ∣ φ})) | |
| 7 | elabgf.3 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
| 8 | 6, 7 | bibi12d 312 | . 2 ⊢ (x = A → ((x ∈ {x ∣ φ} ↔ φ) ↔ (A ∈ {x ∣ φ} ↔ ψ))) |
| 9 | abid 2341 | . 2 ⊢ (x ∈ {x ∣ φ} ↔ φ) | |
| 10 | 1, 5, 8, 9 | vtoclgf 2914 | 1 ⊢ (A ∈ B → (A ∈ {x ∣ φ} ↔ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
| This theorem is referenced by: elabf 2985 elabg 2987 elab3gf 2991 elrabf 2994 |
| Copyright terms: Public domain | W3C validator |