| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > elxpk | Unicode version | ||
| Description: Membership in a Kuratowski cross product. (Contributed by SF, 12-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| elxpk | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2868 | 
. 2
 | |
| 2 | opkex 4114 | 
. . . . 5
 | |
| 3 | eleq1 2413 | 
. . . . 5
 | |
| 4 | 2, 3 | mpbiri 224 | 
. . . 4
 | 
| 5 | 4 | adantr 451 | 
. . 3
 | 
| 6 | 5 | exlimivv 1635 | 
. 2
 | 
| 7 | eqeq1 2359 | 
. . . . 5
 | |
| 8 | 7 | anbi1d 685 | 
. . . 4
 | 
| 9 | 8 | 2exbidv 1628 | 
. . 3
 | 
| 10 | df-xpk 4186 | 
. . 3
 | |
| 11 | 9, 10 | elab2g 2988 | 
. 2
 | 
| 12 | 1, 6, 11 | pm5.21nii 342 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 | 
| This theorem is referenced by: elxpk2 4198 elvvk 4208 xpkvexg 4286 sikexlem 4296 insklem 4305 | 
| Copyright terms: Public domain | W3C validator |