New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elxpk | Unicode version |
Description: Membership in a Kuratowski cross product. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
elxpk | k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 k | |
2 | opkex 4114 | . . . . 5 | |
3 | eleq1 2413 | . . . . 5 | |
4 | 2, 3 | mpbiri 224 | . . . 4 |
5 | 4 | adantr 451 | . . 3 |
6 | 5 | exlimivv 1635 | . 2 |
7 | eqeq1 2359 | . . . . 5 | |
8 | 7 | anbi1d 685 | . . . 4 |
9 | 8 | 2exbidv 1628 | . . 3 |
10 | df-xpk 4186 | . . 3 k | |
11 | 9, 10 | elab2g 2988 | . 2 k |
12 | 1, 6, 11 | pm5.21nii 342 | 1 k |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 cvv 2860 copk 4058 k cxpk 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 |
This theorem is referenced by: elxpk2 4198 elvvk 4208 xpkvexg 4286 sikexlem 4296 insklem 4305 |
Copyright terms: Public domain | W3C validator |