New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeltrrd | Unicode version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eqeltrrd.1 | |
eqeltrrd.2 |
Ref | Expression |
---|---|
eqeltrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrd.1 | . . 3 | |
2 | 1 | eqcomd 2358 | . 2 |
3 | eqeltrrd.2 | . 2 | |
4 | 2, 3 | eqeltrd 2427 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 |
This theorem is referenced by: 3eltr3d 2433 nnsucelr 4429 sfinltfin 4536 vfin1cltv 4548 vfinspsslem1 4551 phi11lem1 4596 xpexr2 5111 ffvresb 5432 ncdisjun 6137 eqtc 6162 |
Copyright terms: Public domain | W3C validator |