Proof of Theorem vfin1cltv
Step | Hyp | Ref
| Expression |
1 | | uncompl 4075 |
. . . . 5
1c ∼
1c
|
2 | | ncfineq 4474 |
. . . . 5
1c ∼ 1c Ncfin 1c ∼ 1c Ncfin |
3 | 1, 2 | ax-mp 5 |
. . . 4
Ncfin 1c ∼ 1c Ncfin |
4 | | 1cex 4143 |
. . . . 5
1c
|
5 | 4 | complex 4105 |
. . . . . 6
∼
1c
|
6 | | incompl 4074 |
. . . . . 6
1c ∼
1c
|
7 | | ncfindi 4476 |
. . . . . 6
Fin 1c ∼ 1c 1c ∼ 1c Ncfin 1c ∼ 1c Ncfin 1c Ncfin ∼ 1c |
8 | 5, 6, 7 | mp3an23 1269 |
. . . . 5
Fin 1c Ncfin 1c ∼ 1c Ncfin 1c Ncfin ∼ 1c |
9 | 4, 8 | mpan2 652 |
. . . 4
Fin Ncfin 1c ∼ 1c Ncfin 1c Ncfin ∼ 1c |
10 | 3, 9 | syl5reqr 2400 |
. . 3
Fin Ncfin
1c Ncfin ∼
1c
Ncfin |
11 | 10 | opkeq2d 4067 |
. 2
Fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c Ncfin
1c
Ncfin |
12 | | 0nel1c 4160 |
. . . . . . 7
1c |
13 | | 0ex 4111 |
. . . . . . . 8
|
14 | 13 | elcompl 3226 |
. . . . . . 7
∼ 1c 1c |
15 | 12, 14 | mpbir 200 |
. . . . . 6
∼
1c |
16 | | n0i 3556 |
. . . . . 6
∼ 1c ∼ 1c |
17 | 15, 16 | ax-mp 5 |
. . . . 5
∼
1c
|
18 | | ncfinprop 4475 |
. . . . . . . . 9
Fin ∼ 1c Ncfin ∼ 1c Nn ∼ 1c Ncfin ∼
1c |
19 | 5, 18 | mpan2 652 |
. . . . . . . 8
Fin Ncfin ∼
1c
Nn ∼ 1c Ncfin
∼ 1c |
20 | 19 | simprd 449 |
. . . . . . 7
Fin ∼ 1c Ncfin ∼ 1c |
21 | | eleq2 2414 |
. . . . . . 7
0c Ncfin ∼ 1c ∼ 1c 0c ∼
1c
Ncfin ∼ 1c |
22 | 20, 21 | syl5ibrcom 213 |
. . . . . 6
Fin 0c Ncfin ∼
1c ∼ 1c 0c |
23 | | el0c 4422 |
. . . . . 6
∼ 1c
0c
∼ 1c |
24 | 22, 23 | syl6ib 217 |
. . . . 5
Fin 0c Ncfin ∼
1c ∼ 1c |
25 | 17, 24 | mtoi 169 |
. . . 4
Fin 0c Ncfin ∼
1c |
26 | | addcid1 4406 |
. . . . . 6
Ncfin 1c
0c
Ncfin 1c |
27 | 26 | eqeq1i 2360 |
. . . . 5
Ncfin
1c 0c Ncfin 1c Ncfin ∼ 1c Ncfin 1c Ncfin
1c Ncfin ∼
1c |
28 | | ncfinprop 4475 |
. . . . . . . 8
Fin 1c Ncfin
1c
Nn 1c Ncfin
1c |
29 | 4, 28 | mpan2 652 |
. . . . . . 7
Fin Ncfin
1c
Nn 1c Ncfin
1c |
30 | 29 | simpld 445 |
. . . . . 6
Fin Ncfin 1c Nn |
31 | | peano1 4403 |
. . . . . . 7
0c
Nn |
32 | 31 | a1i 10 |
. . . . . 6
Fin 0c Nn |
33 | 19 | simpld 445 |
. . . . . 6
Fin Ncfin ∼ 1c Nn |
34 | 26 | a1i 10 |
. . . . . . 7
Fin Ncfin
1c 0c Ncfin 1c |
35 | 29 | simprd 449 |
. . . . . . . 8
Fin 1c Ncfin 1c |
36 | | ne0i 3557 |
. . . . . . . 8
1c Ncfin 1c Ncfin 1c |
37 | 35, 36 | syl 15 |
. . . . . . 7
Fin Ncfin 1c |
38 | 34, 37 | eqnetrd 2535 |
. . . . . 6
Fin Ncfin
1c 0c |
39 | | preaddccan2 4456 |
. . . . . 6
Ncfin 1c
Nn 0c Nn Ncfin
∼ 1c Nn Ncfin 1c
0c
Ncfin 1c
0c
Ncfin 1c Ncfin ∼ 1c
0c
Ncfin ∼ 1c |
40 | 30, 32, 33, 38, 39 | syl31anc 1185 |
. . . . 5
Fin
Ncfin 1c
0c
Ncfin 1c Ncfin ∼ 1c
0c
Ncfin ∼ 1c |
41 | 27, 40 | syl5bbr 250 |
. . . 4
Fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c
0c
Ncfin ∼ 1c |
42 | 25, 41 | mtbird 292 |
. . 3
Fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c |
43 | | ncfinex 4473 |
. . . . . . 7
Ncfin 1c |
44 | | lefinaddc 4451 |
. . . . . . 7
Ncfin
1c
Ncfin ∼ 1c Nn Ncfin 1c Ncfin 1c Ncfin ∼ 1c fin |
45 | 43, 33, 44 | sylancr 644 |
. . . . . 6
Fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin |
46 | | ncfinex 4473 |
. . . . . . . . 9
Ncfin ∼ 1c |
47 | 43, 46 | addcex 4395 |
. . . . . . . 8
Ncfin 1c Ncfin ∼ 1c |
48 | | lefinlteq 4464 |
. . . . . . . 8
Ncfin
1c
Ncfin 1c Ncfin ∼ 1c Ncfin 1c
Ncfin 1c Ncfin 1c Ncfin ∼ 1c fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin Ncfin 1c
Ncfin 1c Ncfin ∼ 1c |
49 | 43, 47, 48 | mp3an12 1267 |
. . . . . . 7
Ncfin 1c
Ncfin 1c Ncfin 1c Ncfin ∼ 1c fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin Ncfin 1c
Ncfin 1c Ncfin ∼ 1c |
50 | 37, 49 | syl 15 |
. . . . . 6
Fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin Ncfin 1c
Ncfin 1c Ncfin ∼ 1c |
51 | 45, 50 | mpbid 201 |
. . . . 5
Fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin Ncfin 1c
Ncfin 1c Ncfin ∼ 1c |
52 | 51 | orcomd 377 |
. . . 4
Fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin |
53 | 52 | ord 366 |
. . 3
Fin Ncfin 1c
Ncfin 1c Ncfin ∼ 1c Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin |
54 | 42, 53 | mpd 14 |
. 2
Fin Ncfin
1c
Ncfin 1c Ncfin ∼ 1c fin |
55 | 11, 54 | eqeltrrd 2428 |
1
Fin Ncfin
1c
Ncfin fin |