| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > eleqtrd | Unicode version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) | 
| Ref | Expression | 
|---|---|
| eleqtrd.1 | 
 | 
| eleqtrd.2 | 
 | 
| Ref | Expression | 
|---|---|
| eleqtrd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleqtrd.1 | 
. 2
 | |
| 2 | eleqtrd.2 | 
. . 3
 | |
| 3 | 2 | eleq2d 2420 | 
. 2
 | 
| 4 | 1, 3 | mpbid 201 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 | 
| This theorem is referenced by: eleqtrrd 2430 3eltr3d 2433 syl5eleq 2439 syl6eleq 2443 prepeano4 4452 tfinpw1 4495 sfintfin 4533 sfinltfin 4536 fnbr 5186 ecelqsdm 5995 enadjlem1 6060 nenpw1pwlem2 6086 spaccl 6287 fnfreclem3 6320 fnfrec 6321 | 
| Copyright terms: Public domain | W3C validator |