| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > eqeu | Unicode version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) | 
| Ref | Expression | 
|---|---|
| eqeu.1 | 
 | 
| Ref | Expression | 
|---|---|
| eqeu | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeu.1 | 
. . . . 5
 | |
| 2 | 1 | spcegv 2941 | 
. . . 4
 | 
| 3 | 2 | imp 418 | 
. . 3
 | 
| 4 | 3 | 3adant3 975 | 
. 2
 | 
| 5 | eqeq2 2362 | 
. . . . . . 7
 | |
| 6 | 5 | imbi2d 307 | 
. . . . . 6
 | 
| 7 | 6 | albidv 1625 | 
. . . . 5
 | 
| 8 | 7 | spcegv 2941 | 
. . . 4
 | 
| 9 | 8 | imp 418 | 
. . 3
 | 
| 10 | 9 | 3adant2 974 | 
. 2
 | 
| 11 | nfv 1619 | 
. . 3
 | |
| 12 | 11 | eu3 2230 | 
. 2
 | 
| 13 | 4, 10, 12 | sylanbrc 645 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |