NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqeu Unicode version

Theorem eqeu 3008
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
Hypothesis
Ref Expression
eqeu.1
Assertion
Ref Expression
eqeu
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem eqeu
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqeu.1 . . . . 5
21spcegv 2941 . . . 4
32imp 418 . . 3
433adant3 975 . 2
5 eqeq2 2362 . . . . . . 7
65imbi2d 307 . . . . . 6
76albidv 1625 . . . . 5
87spcegv 2941 . . . 4
98imp 418 . . 3
1093adant2 974 . 2
11 nfv 1619 . . 3  F/
1211eu3 2230 . 2
134, 10, 12sylanbrc 645 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   w3a 934  wal 1540  wex 1541   wceq 1642   wcel 1710  weu 2204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator