New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylanbrc | Unicode version |
Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
sylanbrc.1 | |
sylanbrc.2 | |
sylanbrc.3 |
Ref | Expression |
---|---|
sylanbrc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanbrc.1 | . . 3 | |
2 | sylanbrc.2 | . . 3 | |
3 | 1, 2 | jca 518 | . 2 |
4 | sylanbrc.3 | . 2 | |
5 | 3, 4 | sylibr 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ecase23d 1285 sbequ1 1918 sb2 2023 sbn 2062 eqeu 3008 euind 3024 reuind 3040 eqssd 3290 ssrabdv 3346 psstr 3374 vfinnc 4472 nnpw1ex 4485 evenoddnnnul 4515 sfinltfin 4536 sfin111 4537 imainss 5043 ssdmrn 5100 fnprg 5154 fnco 5192 f00 5250 f1ss 5263 f1f1orn 5298 foimacnv 5304 fun11iun 5306 dff3 5421 foco2 5427 ffnfv 5428 ffvresb 5432 isoini2 5499 f1oiso 5500 fnoprabg 5586 fmpt 5693 fmpt2d 5696 f1od 5727 sod 5938 so0 5942 iserd 5943 enpw1 6063 ncspw1eu 6160 ltcpw1pwg 6203 nchoicelem17 6306 nchoice 6309 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |