New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqeu | GIF version |
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
Ref | Expression |
---|---|
eqeu.1 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
eqeu | ⊢ ((A ∈ B ∧ ψ ∧ ∀x(φ → x = A)) → ∃!xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeu.1 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
2 | 1 | spcegv 2940 | . . . 4 ⊢ (A ∈ B → (ψ → ∃xφ)) |
3 | 2 | imp 418 | . . 3 ⊢ ((A ∈ B ∧ ψ) → ∃xφ) |
4 | 3 | 3adant3 975 | . 2 ⊢ ((A ∈ B ∧ ψ ∧ ∀x(φ → x = A)) → ∃xφ) |
5 | eqeq2 2362 | . . . . . . 7 ⊢ (y = A → (x = y ↔ x = A)) | |
6 | 5 | imbi2d 307 | . . . . . 6 ⊢ (y = A → ((φ → x = y) ↔ (φ → x = A))) |
7 | 6 | albidv 1625 | . . . . 5 ⊢ (y = A → (∀x(φ → x = y) ↔ ∀x(φ → x = A))) |
8 | 7 | spcegv 2940 | . . . 4 ⊢ (A ∈ B → (∀x(φ → x = A) → ∃y∀x(φ → x = y))) |
9 | 8 | imp 418 | . . 3 ⊢ ((A ∈ B ∧ ∀x(φ → x = A)) → ∃y∀x(φ → x = y)) |
10 | 9 | 3adant2 974 | . 2 ⊢ ((A ∈ B ∧ ψ ∧ ∀x(φ → x = A)) → ∃y∀x(φ → x = y)) |
11 | nfv 1619 | . . 3 ⊢ Ⅎyφ | |
12 | 11 | eu3 2230 | . 2 ⊢ (∃!xφ ↔ (∃xφ ∧ ∃y∀x(φ → x = y))) |
13 | 4, 10, 12 | sylanbrc 645 | 1 ⊢ ((A ∈ B ∧ ψ ∧ ∀x(φ → x = A)) → ∃!xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ w3a 934 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |