NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqsbc2 Unicode version

Theorem eqsbc2 3104
Description: Substitution for the right-hand side in an equality. This proof was automatically generated from the virtual deduction proof eqsbc2VD in set.mm using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
eqsbc2  [.  ].
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem eqsbc2
StepHypRef Expression
1 eqcom 2355 . . . . . 6
21sbcbii 3102 . . . . 5  [.  ].  [.  ].
32biimpi 186 . . . 4  [.  ].  [.  ].
4 eqsbc1 3086 . . . 4  [.  ].
53, 4syl5ib 210 . . 3  [.  ].
6 eqcom 2355 . . 3
75, 6syl6ib 217 . 2  [.  ].
8 idd 21 . . . . 5
98, 6syl6ibr 218 . . . 4
109, 4sylibrd 225 . . 3  [.  ].
1110, 2syl6ibr 218 . 2  [.  ].
127, 11impbid 183 1  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wceq 1642   wcel 1710   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator