New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqsbc2 | GIF version |
Description: Substitution for the right-hand side in an equality. This proof was automatically generated from the virtual deduction proof eqsbc2VD in set.mm using a translation program. (Contributed by Alan Sare, 24-Oct-2011.) |
Ref | Expression |
---|---|
eqsbc2 | ⊢ (A ∈ B → ([̣A / x]̣C = x ↔ C = A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2355 | . . . . . 6 ⊢ (C = x ↔ x = C) | |
2 | 1 | sbcbii 3102 | . . . . 5 ⊢ ([̣A / x]̣C = x ↔ [̣A / x]̣x = C) |
3 | 2 | biimpi 186 | . . . 4 ⊢ ([̣A / x]̣C = x → [̣A / x]̣x = C) |
4 | eqsbc1 3086 | . . . 4 ⊢ (A ∈ B → ([̣A / x]̣x = C ↔ A = C)) | |
5 | 3, 4 | syl5ib 210 | . . 3 ⊢ (A ∈ B → ([̣A / x]̣C = x → A = C)) |
6 | eqcom 2355 | . . 3 ⊢ (A = C ↔ C = A) | |
7 | 5, 6 | syl6ib 217 | . 2 ⊢ (A ∈ B → ([̣A / x]̣C = x → C = A)) |
8 | idd 21 | . . . . 5 ⊢ (A ∈ B → (C = A → C = A)) | |
9 | 8, 6 | syl6ibr 218 | . . . 4 ⊢ (A ∈ B → (C = A → A = C)) |
10 | 9, 4 | sylibrd 225 | . . 3 ⊢ (A ∈ B → (C = A → [̣A / x]̣x = C)) |
11 | 10, 2 | syl6ibr 218 | . 2 ⊢ (A ∈ B → (C = A → [̣A / x]̣C = x)) |
12 | 7, 11 | impbid 183 | 1 ⊢ (A ∈ B → ([̣A / x]̣C = x ↔ C = A)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 ∈ wcel 1710 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |