New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ineq12 | Unicode version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
Ref | Expression |
---|---|
ineq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3451 | . 2 | |
2 | ineq2 3452 | . 2 | |
3 | 1, 2 | sylan9eq 2405 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: ineq12i 3456 ineq12d 3459 ineqan12d 3460 fnun 5190 fvun1 5380 fntxp 5805 endisj 6052 ncdisjeq 6149 letc 6232 |
Copyright terms: Public domain | W3C validator |