New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  fntxp Unicode version

Theorem fntxp 5804
 Description: If and are functions, then their tail cross product is a function over the intersection of their domains. (Contributed by SF, 24-Feb-2015.)
Assertion
Ref Expression
fntxp

Proof of Theorem fntxp
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brtxp 5783 . . . . . . . . . 10
2 brtxp 5783 . . . . . . . . . 10
31, 2anbi12i 678 . . . . . . . . 9
4 ee4anv 1915 . . . . . . . . 9
53, 4bitr4i 243 . . . . . . . 8
6 an6 1261 . . . . . . . . . . 11
7 fununiq 5517 . . . . . . . . . . . . . . . 16
873expib 1154 . . . . . . . . . . . . . . 15
9 fununiq 5517 . . . . . . . . . . . . . . . 16
1093expib 1154 . . . . . . . . . . . . . . 15
118, 10im2anan9 808 . . . . . . . . . . . . . 14
12 eqeq12 2365 . . . . . . . . . . . . . . . 16
13 opth 4602 . . . . . . . . . . . . . . . 16
1412, 13syl6bb 252 . . . . . . . . . . . . . . 15
1514imbi2d 307 . . . . . . . . . . . . . 14
1611, 15syl5ibrcom 213 . . . . . . . . . . . . 13
1716exp4a 589 . . . . . . . . . . . 12
18173impd 1165 . . . . . . . . . . 11
196, 18syl5bi 208 . . . . . . . . . 10
2019exlimdvv 1637 . . . . . . . . 9
2120exlimdvv 1637 . . . . . . . 8
225, 21syl5bi 208 . . . . . . 7
2322alrimiv 1631 . . . . . 6
2423alrimivv 1632 . . . . 5
25 dffun2 5119 . . . . 5
2624, 25sylibr 203 . . . 4
27 dmtxp 5802 . . . . 5
28 ineq12 3452 . . . . 5
2927, 28syl5eq 2397 . . . 4
3026, 29anim12i 549 . . 3
3130an4s 799 . 2
32 df-fn 4790 . . 3
33 df-fn 4790 . . 3
3432, 33anbi12i 678 . 2
35 df-fn 4790 . 2
3631, 34, 353imtr4i 257 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 358   w3a 934  wal 1540  wex 1541   wceq 1642   cin 3208  cop 4561   class class class wbr 4639   cdm 4772   wfun 4775   wfn 4776   ctxp 5735 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-1st 4723  df-co 4726  df-ima 4727  df-id 4767  df-cnv 4785  df-rn 4786  df-dm 4787  df-fun 4789  df-fn 4790  df-2nd 4797  df-txp 5736 This theorem is referenced by:  xpassen  6057
 Copyright terms: Public domain W3C validator