New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > endisj | Unicode version |
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by set.mm contributors, 16-Apr-2004.) |
Ref | Expression |
---|---|
endisj.1 | |
endisj.2 |
Ref | Expression |
---|---|
endisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endisj.1 | . . . 4 | |
2 | 0ex 4111 | . . . . 5 | |
3 | 2 | complex 4105 | . . . 4 ∼ |
4 | 1, 3 | xpsnen 6050 | . . 3 ∼ |
5 | endisj.2 | . . . 4 | |
6 | 5, 2 | xpsnen 6050 | . . 3 |
7 | 4, 6 | pm3.2i 441 | . 2 ∼ |
8 | necompl 3545 | . . 3 ∼ | |
9 | 3, 8 | xpnedisj 5514 | . 2 ∼ |
10 | snex 4112 | . . . 4 ∼ | |
11 | 1, 10 | xpex 5116 | . . 3 ∼ |
12 | snex 4112 | . . . 4 | |
13 | 5, 12 | xpex 5116 | . . 3 |
14 | breq1 4643 | . . . . 5 ∼ ∼ | |
15 | breq1 4643 | . . . . 5 | |
16 | 14, 15 | bi2anan9 843 | . . . 4 ∼ ∼ |
17 | ineq12 3453 | . . . . 5 ∼ ∼ | |
18 | 17 | eqeq1d 2361 | . . . 4 ∼ ∼ |
19 | 16, 18 | anbi12d 691 | . . 3 ∼ ∼ ∼ |
20 | 11, 13, 19 | spc2ev 2948 | . 2 ∼ ∼ |
21 | 7, 9, 20 | mp2an 653 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wex 1541 wceq 1642 wcel 1710 cvv 2860 ∼ ccompl 3206 cin 3209 c0 3551 csn 3738 class class class wbr 4640 cxp 4771 cen 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-en 6030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |