NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ineq12 GIF version

Theorem ineq12 3453
Description: Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.)
Assertion
Ref Expression
ineq12 ((A = B C = D) → (AC) = (BD))

Proof of Theorem ineq12
StepHypRef Expression
1 ineq1 3451 . 2 (A = B → (AC) = (BC))
2 ineq2 3452 . 2 (C = D → (BC) = (BD))
31, 2sylan9eq 2405 1 ((A = B C = D) → (AC) = (BD))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214
This theorem is referenced by:  ineq12i  3456  ineq12d  3459  ineqan12d  3460  fnun  5190  fvun1  5380  fntxp  5805  endisj  6052  ncdisjeq  6149  letc  6232
  Copyright terms: Public domain W3C validator