NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ineq1 Unicode version

Theorem ineq1 3451
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
Assertion
Ref Expression
ineq1

Proof of Theorem ineq1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq2 2414 . . . 4
21anbi1d 685 . . 3
3 elin 3220 . . 3
4 elin 3220 . . 3
52, 3, 43bitr4g 279 . 2
65eqrdv 2351 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   wceq 1642   wcel 1710   cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214
This theorem is referenced by:  ineq2  3452  ineq12  3453  ineq1i  3454  ineq1d  3457  unineq  3506  dfrab3ss  3534  intprg  3961  eladdci  4400  addcass  4416  nndisjeq  4430  reseq1  4929  brdisjg  5822  qsdisj  5996
  Copyright terms: Public domain W3C validator