New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ineq2i | GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ A = B |
Ref | Expression |
---|---|
ineq2i | ⊢ (C ∩ A) = (C ∩ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ A = B | |
2 | ineq2 3452 | . 2 ⊢ (A = B → (C ∩ A) = (C ∩ B)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (C ∩ A) = (C ∩ B) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: in4 3472 inindir 3474 indif2 3499 difun1 3515 dfrab3ss 3534 undif1 3626 difdifdir 3638 dfif3 3673 dfif5 3675 intunsn 3966 rint0 3967 riin0 4040 inindif 4076 ssfin 4471 spfinex 4538 res0 4978 resres 4981 resundi 4982 resindi 4984 inres 4986 resopab 5000 dminxp 5062 resdmres 5079 funimacnv 5169 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |