NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iunconst Unicode version

Theorem iunconst 3978
Description: Indexed union of a constant class, i.e. where does not depend on . (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunconst
Distinct variable groups:   ,   ,

Proof of Theorem iunconst
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.9rzv 3645 . . 3
2 eliun 3974 . . 3
31, 2syl6rbbr 255 . 2
43eqrdv 2351 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wceq 1642   wcel 1710   wne 2517  wrex 2616  c0 3551  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552  df-iun 3972
This theorem is referenced by:  iununi  4051
  Copyright terms: Public domain W3C validator