| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > iununi | Unicode version | ||
| Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| Ref | Expression |
|---|---|
| iununi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2519 |
. . . . . . 7
| |
| 2 | iunconst 3978 |
. . . . . . 7
| |
| 3 | 1, 2 | sylbir 204 |
. . . . . 6
|
| 4 | iun0 4023 |
. . . . . . 7
| |
| 5 | id 19 |
. . . . . . . 8
| |
| 6 | 5 | iuneq2d 3995 |
. . . . . . 7
|
| 7 | 4, 6, 5 | 3eqtr4a 2411 |
. . . . . 6
|
| 8 | 3, 7 | ja 153 |
. . . . 5
|
| 9 | 8 | eqcomd 2358 |
. . . 4
|
| 10 | 9 | uneq1d 3418 |
. . 3
|
| 11 | uniiun 4020 |
. . . 4
| |
| 12 | 11 | uneq2i 3416 |
. . 3
|
| 13 | iunun 4047 |
. . 3
| |
| 14 | 10, 12, 13 | 3eqtr4g 2410 |
. 2
|
| 15 | unieq 3901 |
. . . . . . 7
| |
| 16 | uni0 3919 |
. . . . . . 7
| |
| 17 | 15, 16 | syl6eq 2401 |
. . . . . 6
|
| 18 | 17 | uneq2d 3419 |
. . . . 5
|
| 19 | un0 3576 |
. . . . 5
| |
| 20 | 18, 19 | syl6eq 2401 |
. . . 4
|
| 21 | iuneq1 3983 |
. . . . 5
| |
| 22 | 0iun 4024 |
. . . . 5
| |
| 23 | 21, 22 | syl6eq 2401 |
. . . 4
|
| 24 | 20, 23 | eqeq12d 2367 |
. . 3
|
| 25 | 24 | biimpcd 215 |
. 2
|
| 26 | 14, 25 | impbii 180 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-uni 3893 df-iun 3972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |