New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfeud2 Unicode version

Theorem nfeud2 2216
 Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud2.1
nfeud2.2
Assertion
Ref Expression
nfeud2

Proof of Theorem nfeud2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2208 . 2
2 nfv 1619 . . 3
3 nfeud2.1 . . . . 5
4 nfnae 1956 . . . . 5
53, 4nfan 1824 . . . 4
6 nfeud2.2 . . . . . 6
76adantlr 695 . . . . 5
8 nfeqf 1958 . . . . . . 7
98ancoms 439 . . . . . 6
109adantll 694 . . . . 5
117, 10nfbid 1832 . . . 4
125, 11nfald2 1972 . . 3
132, 12nfexd2 1973 . 2
141, 13nfxfrd 1571 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 176   wa 358  wal 1540  wex 1541  wnf 1544   wceq 1642  weu 2204 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-eu 2208 This theorem is referenced by:  nfmod2  2217  nfeud  2218  nfreud  2783
 Copyright terms: Public domain W3C validator