NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfreud Unicode version

Theorem nfreud 2784
Description: Deduction version of nfreu 2786. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfreud.1  F/
nfreud.2  F/_
nfreud.3  F/
Assertion
Ref Expression
nfreud  F/

Proof of Theorem nfreud
StepHypRef Expression
1 df-reu 2622 . 2
2 nfreud.1 . . 3  F/
3 nfcvf 2512 . . . . . 6  F/_
43adantl 452 . . . . 5  F/_
5 nfreud.2 . . . . . 6  F/_
65adantr 451 . . . . 5  F/_
74, 6nfeld 2505 . . . 4  F/
8 nfreud.3 . . . . 5  F/
98adantr 451 . . . 4  F/
107, 9nfand 1822 . . 3  F/
112, 10nfeud2 2216 . 2  F/
121, 11nfxfrd 1571 1  F/
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wa 358  wal 1540   F/wnf 1544   wceq 1642   wcel 1710  weu 2204   F/_wnfc 2477  wreu 2617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-cleq 2346  df-clel 2349  df-nfc 2479  df-reu 2622
This theorem is referenced by:  nfreu  2786
  Copyright terms: Public domain W3C validator